Advertisement

Microchimica Acta

, 186:653 | Cite as

Entropy-driven catalytic reaction-induced hairpin structure switching for fluorometric detection of uranyl ions

  • Wen Yun
  • Lin Chen
  • Zao Yi
  • Yong Yi
  • Yongjian TangEmail author
  • Lizhu YangEmail author
Original Paper
  • 91 Downloads

Abstract

An ultra-sensitive and “turn-on” method is demonstrated for the determination of uranyl ion. The assay is based on hairpin-to-DNAzyme structure switching that is induced by an entropy-driven catalytic reaction. An UO22+-specific DNAzyme is cleaved by UO22+ to produce a DNA fragment. This fragment initiates the entropy-driven catalytic reaction to produce a large number of a sequence “R”. The sequence R initiates the circular cleavage of FAM-labeled hairpins by switching the hairpin to Mg2+-specific DNAzyme structure. This causes the recovery of green fluorescence. The method works in the 20 pM to 800 pM concentration range and the limit of detection is 4 pM.

Graphical abstract

Entropy driven catalytic reaction induced hairpin structure switching for fluorometric detection of uranyl ions.

Keywords

Fluorescence DNAzyme Entropy-driven amplification Structure switching 

Notes

Acknowledgements

This work is sponsored by the Open Project of State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials (Grant No. 17kffk06), the Project of Wenzhou Science &Technology Bureau (W20170006), National Natural Science Foundation of China (Grant No. 31300819), the Sichuan Science and Technology Program (2018GZ0521), the China Postdoctoral Science Foundation (Grant No. 2019 M653475).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3767_MOESM1_ESM.docx (410 kb)
ESM 1 (DOCX 406 kb)

References

  1. 1.
    Lourenço J, Pereira R, Silva A, Carvalho F, Oliveira J, Malta M, Paiva A, Gonçalves F, Mendo S (2012) Evaluation of the sensitivity of genotoxicity and cytotoxicity endpoints in earthworms exposed in situ to uranium mining wastes. Ecotoxicol Environ Saf 75:46–54CrossRefGoogle Scholar
  2. 2.
    Darolles C, Broggio D, Feugier A, Frelon S, Dublineau I, De Meo M, Petitot F (2010) Different genotoxic profiles between depleted and enriched uranium. Toxicol Lett 192(3):337–348CrossRefGoogle Scholar
  3. 3.
    Benavides-Garcia MG, Balasubramanian K (2009) Structural insights into the binding of uranyl with human serum protein Apotransferrin structure and spectra of protein− uranyl interactions. Chem Res Toxicol 22(9):1613–1621CrossRefGoogle Scholar
  4. 4.
    Moshe M, Elbaz J, Willner I (2009) Sensing of UO2 2+ and design of logic gates by the application of supramolecular constructs of ion-dependent DNAzymes. Nano Lett 9(3):1196–1200CrossRefGoogle Scholar
  5. 5.
    Farzin L, Shamsipur M, Sheibani S, Samandari L, Hatami Z (2019) A review on nanomaterial-based electrochemical, optical, photoacoustic and magnetoelastic methods for determination of uranyl cation. Microchim Acta 186(5):289CrossRefGoogle Scholar
  6. 6.
    Santos JS, Teixeira LS, Dos Santos WN, Lemos VA, Godoy JM, Ferreira SL (2010) Uranium determination using atomic spectrometric techniques: an overview. Anal Chim Acta 674(2):143–156CrossRefGoogle Scholar
  7. 7.
    Abbasi S (1989) Atomic absorption spectrometric and spectrophotometric trace analysis of uranium in environmental samples with Np-methoxyphenyl-2-furylacrylohydroxamic acid and 4-(2-pyridylazo) resorcinol. Int J Environ Anal Chem 36(3):163–172CrossRefGoogle Scholar
  8. 8.
    Jamali MR, Assadi Y, Shemirani F, Hosseini MRM, Kozani RR, Masteri-Farahani M, Salavati-Niasari M (2006) Synthesis of salicylaldehyde-modified mesoporous silica and its application as a new sorbent for separation, preconcentration and determination of uranium by inductively coupled plasma atomic emission spectrometry. Anal Chim Acta 579(1):68–73CrossRefGoogle Scholar
  9. 9.
    Chandrasekaran K, Karunasagar D, Arunachalam J (2011) Dispersive liquid–liquid micro extraction of uranium (VI) from groundwater and seawater samples and determination by inductively coupled plasma–optical emission spectrometry and flow injection–inductively coupled plasma mass spectrometry. Anal Methods 3(9):2140–2147CrossRefGoogle Scholar
  10. 10.
    Varga Z, Krachler M, Nicholl A, Ernstberger M, Wiss T, Wallenius M, Mayer K (2018) Accurate measurement of uranium isotope ratios in solid samples by laser ablation multi-collector inductively coupled plasma mass spectrometry. J Anal At Spectrom 33(6):1076–1080CrossRefGoogle Scholar
  11. 11.
    Zhang H, Lin L, Zeng X, Ruan Y, Wu Y, Lin M, He Y, Fu F (2016) Magnetic beads-based DNAzyme recognition and AuNPs-based enzymatic catalysis amplification for visual detection of trace uranyl ion in aqueous environment. Biosens Bioelectron 78:73–79CrossRefGoogle Scholar
  12. 12.
    Yun W, Cai D, Jiang J, Wang X, Liao J, Zhang P, Sang G (2016) An ultrasensitive electrochemical biosensor for uranyl detection based on DNAzyme and target-catalyzed hairpin assembly. Microchim Acta 183(4):1425–1432CrossRefGoogle Scholar
  13. 13.
    Zhang H, Ruan Y, Lin L, Lin M, Zeng X, Xi Z, Fu F (2015) A turn-off fluorescent biosensor for the rapid and sensitive detection of uranyl ion based on molybdenum disulfide nanosheets and specific DNAzyme. Spectrochim Acta A Mol Biomol Spectrosc 146:1–6CrossRefGoogle Scholar
  14. 14.
    Zhang D, Chen Z, Omar H, Deng L, Khashab NM (2015) Colorimetric peroxidase mimetic assay for uranyl detection in sea water. ACS Appl Mater Interfaces 7(8):4589–4594CrossRefGoogle Scholar
  15. 15.
    McGhee CE, Loh KY, Lu Y (2017) DNAzyme sensors for detection of metal ions in the environment and imaging them in living cells. Curr Opin Biotechnol 45:191–201CrossRefGoogle Scholar
  16. 16.
    Liu J, Cao Z, Lu Y (2009) Functional nucleic acid sensors. Chem Rev 109(5):1948–1998CrossRefGoogle Scholar
  17. 17.
    Zhou Y, Tang L, Zeng G, Zhang C, Zhang Y, Xie X (2016) Current progress in biosensors for heavy metal ions based on DNAzymes/DNA molecules functionalized nanostructures: a review. Sensors Actuators B Chem 223:280–294CrossRefGoogle Scholar
  18. 18.
    Cheng X, Yu X, Chen L, Zhang H, Wu Y, Fu F (2017) Visual detection of ultra-trace levels of uranyl ions using magnetic bead-based DNAzyme recognition in combination with rolling circle amplification. Microchim Acta 184(11):4259–4267CrossRefGoogle Scholar
  19. 19.
    Cen C, Yi Z, Zhang G, Zhang Y, Liang C, Chen X, Tang Y, Ye X, Yi Y, Wang J (2019) Theoretical design of a triple-band perfect metamaterial absorber in the THz frequency range. Results in Physics 14:102463CrossRefGoogle Scholar
  20. 20.
    Liang CP, Ma PQ, Liu H, Guo X, Yin BC, Ye BC (2017) Rational engineering of a dynamic, entropy-driven DNA Nanomachine for intracellular MicroRNA imaging. Angew Chem 129(31):9205–9209CrossRefGoogle Scholar
  21. 21.
    Ross PD, Subramanian S (1981) Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry 20(11):3096–3102CrossRefGoogle Scholar
  22. 22.
    Kim D, Garner OB, Ozcan A, Di Carlo D (2016) Homogeneous entropy-driven amplified detection of biomolecular interactions. ACS Nano 10(8):7467–7475CrossRefGoogle Scholar
  23. 23.
    Zhang DY, Turberfield AJ, Yurke B, Winfree E (2007) Engineering entropy-driven reactions and networks catalyzed by DNA. Science 318(5853):1121–1125CrossRefGoogle Scholar
  24. 24.
    Zhang J, Lin Y, Peng H, Hong N, Cheng L, Wei G, Fan H (2018) Dual signal amplification electrochemical biosensor for Lead cation. Electroanalysis 30(5):955–961CrossRefGoogle Scholar
  25. 25.
    Chen C, Wei G, Yao X, Liao F, Peng H, Zhang J, Hong N, Cheng L, Fan H (2018) Ru (bpy)3 2+/β-cyclodextrin-Au nanoparticles/nanographene functionalized nanocomposites-based thrombin electrochemiluminescence aptasensor. J Solid State Electrochem 22(7):2059–2066CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Environment-Friendly Energy MaterialSouthwest University of Science and TechnologyMianyangPeople’s Republic of China
  2. 2.School of Pharmaceutical SciencesWenzhou Medical UniversityZhejiangChina

Personalised recommendations