Advertisement

Microchimica Acta

, 186:656 | Cite as

Surface plasmon coupling electrochemiluminescence assay based on the use of AuNP@C3N4QD@mSiO2 for the determination of the Shiga toxin-producing Escherichia coli (STEC) gene

  • Qian Zhang
  • Yang Liu
  • Yixin Nie
  • Qiang MaEmail author
  • Bing Zhao
Original Paper

Abstract

This work describes a surface plasmon coupling electrochemiluminescence (SPC-ECL) method for the determination of the Shiga toxin-producing Escherichia coli (STEC) gene. Firstly, gold nanoparticles (Au NPs) were encapsulated into a solid silica core (AuNP@SiO2). Secondly, graphite phase carbon nitride quantum dots (g-C3N4 QDs) were embedded in the mesoporous silica shell (mSiO2) to form nanospheres of type AuNP@C3N4QD@mSiO2. It is found that the surface plasmon coupling effect of the Au NPs in the solid silica core strongly enhances the ECL of the g-C3N4/K2S2O8 system. The mSiO2 carry much of the ECL luminophore (g-C3N4 QDs), and the co-reactant can readily pass the mesopores to react with QDs to give an ECL reaction. Because of these two features, the ECL is 3.8 times stronger compared to ECL sensing using g-C3N4 QDs only. Finally, AuNP@C3N4QD@mSiO2 was linked to the probe DNA to construct a competitive DNA sensor. When no target DNA is added, most of the capture DNA on the electrode is complementary to the probe DNA of AuNP@C3N4QD@mSiO2-probe DNA. At this time, the ECL signal is the strongest. When the target DNA is added, some of the capture DNA is paired with it and the remaining capture DNA is paired with the probe DNA. Consequently, less luminophore reaches the electrode and the signal is weaker. The method works in the 0.1 pM to 1 nM concentration range and has a 9 fM detection limit. It was successfully applied to the ultrasensitive determination of the STEC gene in human serum.

Graphical abstract

Schematic illustration for the “egg-yolk puff” structured ECL sensor based on Au NPs, g-C3N4 QDs, and mesoporous silica shell.

Keywords

Competitive assay ECL DNA sensor ECL mechanism g-C3N4 QDs 

Notes

Acknowledgements

The work is supported by the Youth Science Fund of Jilin Province (20140520081JH), the “Thirteenth Five Year” Project of the Science and Technology Research in the Education Department of Jilin Province, China.

Compliance with ethical standards

There are no conflicts of interest to declare.

Supplementary material

604_2019_3758_MOESM1_ESM.doc (931 kb)
ESM 1 (DOC 931 kb)

References

  1. 1.
    Kataria J. L., Dutta T. K., P. R, G. TJ (2014) Detection and molecular characterization of Shiga toxin producing Escherichia coli (STEC) autoagglutinating adhesion gene (saa) from piglets in Mizoram. Veterinary World 7 (6):373–376.  https://doi.org/10.14202/vetworld.2014
  2. 2.
    Ching KH, He X, Stanker LH, Lin AV, McGarvey JA, Hnasko R (2015) Detection of Shiga toxins by lateral flow assay. Toxins (Basel) 7(4):1163–1173.  https://doi.org/10.3390/toxins7041163 CrossRefGoogle Scholar
  3. 3.
    Du X-L, Kang T-F, Lu L-P, Cheng S-Y (2018) An electrochemiluminescence sensor based on CdSe@CdS functionalized MoS2 and hemin/G-quadruplex-based DNAzyme biocatalytic precipitation for sensitive detection of Pb(ii). Anal Methods 10(1):51–58.  https://doi.org/10.1039/c7ay02334k CrossRefGoogle Scholar
  4. 4.
    Stewart AJ, Brown K, Dennany L (2018) Cathodic quantum dot facilitated Electrochemiluminescent detection in blood. Anal Chem 90(21):12944–12950.  https://doi.org/10.1021/acs.analchem.8b03572 CrossRefPubMedGoogle Scholar
  5. 5.
    Gao H, Wen L, Wu Y, Yan X, Li J, Li X, Fu Z, Wu G (2018) Sensitive and facile Electrochemiluminescent immunoassay for detecting genetically modified rapeseed based on novel carbon nanoparticles. J Agric Food Chem 66(20):5247–5253.  https://doi.org/10.1021/acs.jafc.8b01080 CrossRefPubMedGoogle Scholar
  6. 6.
    Feng QM, Shen YZ, Li MX, Zhang ZL, Zhao W, Xu JJ, Chen HY (2016) Dual-wavelength Electrochemiluminescence Ratiometry based on resonance energy transfer between au nanoparticles functionalized g-C3N4 Nanosheet and Ru(bpy) 3 2+ for microRNA detection. Anal Chem 88(1):937–944.  https://doi.org/10.1021/acs.analchem.5b03670 CrossRefPubMedGoogle Scholar
  7. 7.
    Bandyopadhyay A, Ghosh D, Kaley NM, Pati SK (2017) Photocatalytic activity of g-C3N4 quantum dots in visible light: effect of physicochemical modifications. J Phys Chem C 121(3):1982–1989.  https://doi.org/10.1021/acs.jpcc.6b11520 CrossRefGoogle Scholar
  8. 8.
    Zhang Q, Quan X, Wang H, Chen S, Su Y, Li Z (2017) Constructing a visible-light-driven photocatalytic membrane by g-C3N4 quantum dots and TiO2 nanotube array for enhanced water treatment. Sci Rep 7(1):3128–3135.  https://doi.org/10.1038/s41598-017-03347-y CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Sun B, Lu N, Su Y, Yu H, Meng X, Gao Z (2017) Decoration of TiO2 nanotube arrays by graphitic-C3N4 quantum dots with improved photoelectrocatalytic performance. Appl Surf Sci 394:479–487.  https://doi.org/10.1016/j.apsusc.2016.10.121 CrossRefGoogle Scholar
  10. 10.
    Tang Y, Su Y, Yang N, Zhang L, Lv Y (2014) Carbon nitride quantum dots: a novel chemiluminescence system for selective detection of free chlorine in water. Anal Chem 86(9):4528–4535.  https://doi.org/10.1021/ac5005162 CrossRefPubMedGoogle Scholar
  11. 11.
    Motaghed Mazhabi R, Ge L, Jiang H, Wang X (2018) A facile photoelectrochemical sensor for high sensitive ROS and AA detection based on graphitic carbon nitride nanosheets. Biosens Bioelectron 107:54–61.  https://doi.org/10.1016/j.bios.2018.02.008 CrossRefPubMedGoogle Scholar
  12. 12.
    Yin Y, Zhang Y, Gao T, Yao T, Han J, Han Z, Zhang Z, Wu Q, Song B (2017) One-pot evaporation–condensation strategy for green synthesis of carbon nitride quantum dots: an efficient fluorescent probe for ion detection and bioimaging. Mater Chem Phys 194:293–301.  https://doi.org/10.1016/j.matchemphys.2017.03.054 CrossRefGoogle Scholar
  13. 13.
    Chen L, Zeng X, Si P, Chen Y, Chi Y, Kim DH, Chen G (2014) Gold nanoparticle-graphite-like C3N4 nanosheet nanohybrids used for electrochemiluminescent immunosensor. Anal Chem 86(9):4188–4195.  https://doi.org/10.1021/ac403635f CrossRefPubMedGoogle Scholar
  14. 14.
    Zhang Y, Li L, Zhang L, Ge S, Yan M, Yu J (2017) In-situ synthesized polypyrrole-cellulose conductive networks for potential-tunable foldable power paper. Nano Energy 31:174–182.  https://doi.org/10.1016/j.nanoen.2016.11.029 CrossRefGoogle Scholar
  15. 15.
    Zhang X, Du X (2016) Carbon Nanodot-decorated ag@SiO2 nanoparticles for fluorescence and surface-enhanced Raman scattering immunoassays. ACS Appl Mater Interfaces 8(1):1033–1040.  https://doi.org/10.1021/acsami.5b11446 CrossRefPubMedGoogle Scholar
  16. 16.
    Zhou Y, Chen M, Zhuo Y, Chai Y, Xu W, Yuan R (2017) In situ electrodeposited synthesis of Electrochemiluminescent ag nanoclusters as signal probe for ultrasensitive detection of cyclin-D1 from Cancer cells. Anal Chem 89(12):6787–6793.  https://doi.org/10.1021/acs.analchem.7b01154 CrossRefPubMedGoogle Scholar
  17. 17.
    Song X, Li X, Wei D, Feng R, Yan T, Wang Y, Ren X, Du B, Ma H, Wei Q (2019) CuS as co-reaction accelerator in PTCA-K2S2O8 system for enhancing electrochemiluminescence behavior of PTCA and its application in detection of amyloid-beta protein. Biosens Bioelectron 126:222–229.  https://doi.org/10.1016/j.bios.2018.10.068 CrossRefPubMedGoogle Scholar
  18. 18.
    Xu Y, Niu X, Zhang H, Xu L, Zhao S, Chen H, Chen X (2015) Switch-on fluorescence sensing of glutathione in food samples based on a graphitic carbon nitride quantum dot (g-CNQD)-Hg2+chemosensor. J Agric Food Chem 63(6):1747–1755.  https://doi.org/10.1021/jf505759z CrossRefPubMedGoogle Scholar
  19. 19.
    Li H, Shao F-Q, Huang H, Feng J-J, Wang A-J (2016) Eco-friendly and rapid microwave synthesis of green fluorescent graphitic carbon nitride quantum dots for vitro bioimaging. Sensors Actuators B Chem 226:506–511.  https://doi.org/10.1016/j.snb.2015.12.018 CrossRefGoogle Scholar
  20. 20.
    Sun LF, Bao L, Hyun BR, Bartnik A, Zhong YW, Reed J, Pang DW, HD A˜a, Malliaras GG, Wise FW (2009) Electrogenerated Chemiluminescence from PbS QuantumDots. Nano Lett 9(2):789–793.  https://doi.org/10.1021/nl803459b CrossRefPubMedGoogle Scholar
  21. 21.
    Dong YP, Wang J, Peng Y, Zhu JJ (2017) Electrogenerated chemiluminescence of Si quantum dots in neutral aqueous solution and its biosensing application. Biosens Bioelectron 89:1053–1058.  https://doi.org/10.1016/j.bios.2016.10.011 CrossRefPubMedGoogle Scholar
  22. 22.
    Zhang J, Gryczynski Z, Lakowicz JR (2004) First observation of surface plasmon-coupled electrochemiluminescence. Chem Phys Lett 393(4–6):483–487.  https://doi.org/10.1016/j.cplett.2004.06.050 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Yuk JS, O’Reilly E, Forster RJ, MacCraith BD, McDonagh C (2011) Demonstration of surface plasmon-coupled emission using solid-state electrochemiluminescence. Chem Phys Lett 513(1–3):112–117.  https://doi.org/10.1016/j.cplett.2011.07.083 CrossRefGoogle Scholar
  24. 24.
    Xie KX, Xu LT, Zhai YY, Wang ZC, Chen M, Pan XH, Cao SH, Li YQ (2019) The synergistic enhancement of silver nanocubes and graphene oxide on surface plasmon-coupled emission. Talanta 195:752–756.  https://doi.org/10.1016/j.talanta.2018.11.112 CrossRefPubMedGoogle Scholar
  25. 25.
    Li X, Xu Y, Chen Y, Wang C, Jiang J, Dong J, Yan H, Du X (2019) Dual enhanced Electrochemiluminescence of Aminated au@SiO2/CdS quantum dot superstructures: electromagnetic field enhancement and chemical enhancement. ACS Appl Mater Interfaces 11(4):4488–4499.  https://doi.org/10.1021/acsami.8b14886 CrossRefPubMedGoogle Scholar
  26. 26.
    Liu Y, Chen X, Ma Q (2018) A novel amplified electrochemiluminescence biosensor based on au NPs@PDA@CuInZnS QDs nanocomposites for ultrasensitive detection of p53 gene. Biosens Bioelectron 117:240–245.  https://doi.org/10.1016/j.bios.2018.06.023 CrossRefPubMedGoogle Scholar
  27. 27.
    Zhang X, Xie X, Wang H, Zhang J, Pan B, Xie Y (2013) Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J Am Chem Soc 135(1):18–21.  https://doi.org/10.1021/ja308249k CrossRefPubMedGoogle Scholar
  28. 28.
    Chen L, Huang D, Ren S, Dong T, Chi Y, Chen G (2013) Preparation of graphite-like carbon nitride nanoflake film with strong fluorescent and electrochemiluminescent activity. Nanoscale 5(1):225–230.  https://doi.org/10.1039/c2nr32248j CrossRefPubMedGoogle Scholar
  29. 29.
    Cheng C, Huang Y, Tian X, Zheng B, Li Y, Yuan H, Xiao D, Xie S, Choi MM (2012) Electrogenerated chemiluminescence behavior of graphite-like carbon nitride and its application in selective sensing Cu2+. Anal Chem 84(11):4754–4759.  https://doi.org/10.1021/ac300205w CrossRefPubMedGoogle Scholar
  30. 30.
    Liu Y, Chen X, Wang M, Ma Q (2018) A visual electrochemiluminescence resonance energy transfer/surface plasmon coupled electrochemiluminescence nanosensor for Shiga toxin-producing Escherichia coli detection. Green Chem 20(24):5520–5527.  https://doi.org/10.1039/c8gc03010c CrossRefGoogle Scholar
  31. 31.
    Zhang Y, Wang L, Luo F, Qiu B, Guo L, Weng Z, Lin Z, Chen G (2017) An electrochemiluminescence biosensor for Kras mutations based on locked nucleic acid functionalized DNA walkers and hyperbranched rolling circle amplification. Chem Commun (Camb) 53(20):2910–2913.  https://doi.org/10.1039/c7cc00009j CrossRefGoogle Scholar
  32. 32.
    Li MX, Feng QM, Zhou Z, Zhao W, Xu JJ, Chen HY (2018) Plasmon-enhanced Electrochemiluminescence for nucleic acid detection based on gold Nanodendrites. Anal Chem 90(2):1340–1347.  https://doi.org/10.1021/acs.analchem.7b04307 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Qian Zhang
    • 1
  • Yang Liu
    • 1
  • Yixin Nie
    • 1
  • Qiang Ma
    • 1
    Email author
  • Bing Zhao
    • 2
  1. 1.Department of Analytical Chemistry, College of ChemistryJilin UniversityChangchunChina
  2. 2.State Key Laboratory of Supramolecular Structure and MaterialsJilin UniversityChangchunChina

Personalised recommendations