Advertisement

Microchimica Acta

, 186:652 | Cite as

Non-conjugated polymer carbon dots for fluorometric determination of metronidazole

  • Shuliang Yang
  • Long Wang
  • Ling Zuo
  • Chun Zhao
  • Huiyu LiEmail author
  • Lan DingEmail author
Original Paper
  • 185 Downloads

Abstract

Non-conjugated polymer carbon dots (PCDs) with a 9% fluorescence quantum yield were synthesized by a pyrolytic method using polyethyleneimine as the sole precursor. The PCDs have an average size about 2.1 nm and a blue fluorescence, with excitation/emission maxima at 380/457 nm, that is quenched by the drug metronidazole. The method has a linear response in the 0.06–15 μg mL−1 metronidazole concentration range and a 20 ng mL−1 detection limit. Milk samples were spiked at two levels (0.6 and 5.0 μg mL−1), and the recoveries of metronidazole are in the range of 96.7–102.2%.

Graphical abstract

Schematic representation of preparation of non-conjugated polymer carbon dots (PCDs) and detection of metronidazole. Metronidazole with negative charge is easy to produce electrostatic interaction with polyethyleneimine chain with positive charge, which leads to PCDs fluorescence quenching, so as to realize metronidazole detection.

Keywords

Fluorescent material Fluorescent probe Inner-filter effect Polyethyleneimine Antibiotics Milk Metronidazole 

Notes

Acknowledgements

This work received the support of the Development Program of the Ministry of Science and Technology of Jilin Province, China (Grant number 20180201011GX).

Author contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript. ‡These authors contributed equally.

Compliance with ethical standards

The author(s) declares that they have no competing interests.

Supplementary material

604_2019_3746_MOESM1_ESM.docx (317 kb)
ESM 1 (DOCX 317 kb)

References

  1. 1.
    Zu F, Yan F, Bai Z, Xu J, Wang Y, Huang Y, Zhou X (2017) The quenching of the fluorescence of carbon dots: a review on mechanisms and applications. Microchim Acta 184(7):1899–1914CrossRefGoogle Scholar
  2. 2.
    Ahmed GHG, Laíño RB, Calzón JAG, García MED (2015) Highly fluorescent carbon dots as nanoprobes for sensitive and selective determination of 4-nitrophenol in surface waters. Microchim Acta 182(1):51–59CrossRefGoogle Scholar
  3. 3.
    Xia J, Zhuang YT, Yu YL, Wang JH (2017) Highly fluorescent carbon polymer dots prepared at room temperature, and their application as a fluorescent probe for determination and intracellular imaging of ferric ion. Microchim Acta 184(4):1109–1116CrossRefGoogle Scholar
  4. 4.
    Feng H, Pan K, Lv X, Yang B, Cui Z (2017) High performance polymer carbon dots for detection of chromium (VI) ions in water. AIP Conf Proc 1829(1):020045CrossRefGoogle Scholar
  5. 5.
    Zhu S, Wang L, Zhou N, Zhao X, Song Y, Maharjan S, Zhang J, Lu L, Wang H, Yang B (2014) The crosslink enhanced emission (CEE) in non-conjugated polymer dots: from the photoluminescence mechanism to the cellular uptake mechanism and internalization. Chem Commun 50(89):13845–13848CrossRefGoogle Scholar
  6. 6.
    Sun B, Zhao B, Wang D, Wang Y, Tang Q, Zhu S, Yang B, Sun H (2016) Fluorescent non-conjugated polymer dots for targeted cell imaging. Nanoscale 8(18):9837–9841CrossRefGoogle Scholar
  7. 7.
    Feng TL, Zhu SJ, Zeng QS, Lu SY, Tao SY, Liu JJ, Yang B (2018) Supramolecular cross-link-regulated emission and related applications in polymer carbon dots. ACS Appl Mater Interfaces 10(15):12262–12277CrossRefGoogle Scholar
  8. 8.
    Zhu SJ, Song YB, Shao JR, Zhao XH, Yang B (2015) Non-conjugated polymer dots with crosslink enhanced emission in the absence of fluorophore units. Angew Chem Int Ed 54(49):14626–14637CrossRefGoogle Scholar
  9. 9.
    Tao SY, Zhu SJ, Feng TL, Xia CL, Song YB, Yang B (2017) The polymeric characteristics and photoluminescence mechanism in polymer carbon dots: a review. Mater Today Chem 6:13–25CrossRefGoogle Scholar
  10. 10.
    Song YB, Zhu SJ, Shao JR, Yang B (2016) Polymer carbon dots-a highlight reviewing their unique structure, bright emission and probable photoluminescence mechanism. J Polym Sci, Part A: Polym Chem 55(4):610–615CrossRefGoogle Scholar
  11. 11.
    Wang C, Zhou J, Ran G, Li F, Zhong Z, Song Q, Dong Q (2017) Bi-functional fluorescent polymer dots: a one-step synthesis via controlled hydrothermal treatment and application as probes for the detection of temperature and Fe3+. J Mater Chem C 5(2):434–443CrossRefGoogle Scholar
  12. 12.
    Han L, Liu SG, Zhang XF, Tao BX, Li NB, Luo HQ (2018) A sensitive polymer dots-manganese dioxide fluorescent nanosensor for “turn-on” detection of glutathione in human serum. Sens Actuators B Chem 258:25–31CrossRefGoogle Scholar
  13. 13.
    Shi CY, Deng N, Liang JJ, Zhou KN, Fu QQ, Tang Y (2015) A fluorescent polymer dots positive readout fluorescent quenching lateral flow sensor for ractopamine rapid detection. Anal Chim Acta 854:202–208CrossRefGoogle Scholar
  14. 14.
    Ammar HB, Brahim MB, Abdelhédi R, Samet Y (2016) Boron doped diamond sensor for sensitive determination of metronidazole: mechanistic and analytical study by cyclic voltammetry and square wave voltammetry. Mater Sci Eng Proc Conf 59:604–610CrossRefGoogle Scholar
  15. 15.
    Gholivand MB, Torkashvand M (2011) A novel high selective and sensitive metronidazole voltammetric sensor based on a molecularly imprinted polymer-carbon paste electrode. Talanta 84(3):905–912CrossRefGoogle Scholar
  16. 16.
    Liu Y, Liu J, Tang H, Liu J, Xu BB, Yu F, Li YC (2015) Fabrication of highly sensitive and selective electrochemical sensor by using optimized molecularly imprinted polymers on multi-walled carbon nanotubes for metronidazole measurement. Sensors Actuators B Chem 206:647–652CrossRefGoogle Scholar
  17. 17.
    Liu W, Zhang J, Li C, Tang L, Zhang Z, Yang M (2013) A novel composite film derived from cysteic acid and PDDA-functionalized graphene: enhanced sensing material for electrochemical determination of metronidazole. Talanta 104:204–211CrossRefGoogle Scholar
  18. 18.
    Maher HM, Youssef RM, Khalil RH, El-Bahr SM (2008) Simultaneous multiresidue determination of metronidazole and spiramycin in fish muscle using high performance liquid chromatography with UV detection. J Chromatogr B 876(2):175–181CrossRefGoogle Scholar
  19. 19.
    Silva M, Schramm S, Kano E, Koono E, Porta V, Serra C (2009) Development and validation of a HPLC-MS-MS method for quantification of metronidazole in human plasma. J Chromatogr Sci 47(9):781–784CrossRefGoogle Scholar
  20. 20.
    Han CQ, Chen J, Wu XM, Huang YW, Zhao YP (2014) Detection of metronidazole and ronidazole from environmental samples by surface enhanced Raman spectroscopy. Talanta 128:293–298CrossRefGoogle Scholar
  21. 21.
    Yang M, Guo ML, Feng YL, Lei YM, Cao YJ, Zhu DB, Yu Y, Ding L (2018) Sensitive voltammetric detection of metronidazole based on three-dimensional graphene-like carbon architecture/polythionine modified glassy carbon electrode. J Electrochem Soc 165(11):B530–B535CrossRefGoogle Scholar
  22. 22.
    Zhao JR, Pan XH, Sun XB, Pan W, Yu GF, Wang JP (2017) Detection of metronidazole in honey and metronidazole tablets using carbon dots-based sensor via the inner filter effect. Luminescence 33(4):704–712CrossRefGoogle Scholar
  23. 23.
    Zhou X, Zhao G, Tan X, Qian X, Zhang T, Gui J, Yang L, Xie X (2019) Nitrogen-doped carbon dots with high quantum yield for colorimetric and fluorometric detection of ferric ions and in a fluorescent ink. Microchim Acta 186(2):67CrossRefGoogle Scholar
  24. 24.
    Yang X, Zhu S, Dou Y, Zhuo Y, Luo Y, Feng Y (2014) Novel and remarkable enhanced-fluorescence system based on gold nanoclusters for detection of tetracycline. Talanta 122:36–42CrossRefGoogle Scholar
  25. 25.
    Yu SJ, Chen K, Wang F, Zhu YF (2018) Synthesis of chitosan-based polymer carbon dots fluorescent materials and application of self-assembled drug-loading. Chin Opt 11(3):420–430CrossRefGoogle Scholar
  26. 26.
    Fan RJ, Sun Q, Zhang L, Zhang Y, Lu AH (2014) Photoluminescent carbon dots directly derived from polyethylene glycol and their application for cellular imaging. Carbon 71:87–93CrossRefGoogle Scholar
  27. 27.
    Zhu SJ, Zhang JH, Wang L, Song YB, Zhang GY, Wang HY, Yang B (2012) A general route to make non-conjugated linear polymers luminescent. Chem Commun 48(88):10889–10891CrossRefGoogle Scholar
  28. 28.
    Yang X, Wang Y, Shen X, Su C, Yang J, Piao M, Jia F, Gao G, Zhang L, Lin Q (2017) One-step synthesis of photoluminescent carbon dots with excitation-independent emission for selective bioimaging and gene delivery. J Colloid Interface Sci 492:1–7CrossRefGoogle Scholar
  29. 29.
    Hu SL, Niu KY, Sun J, Yang J, Zhao NQ, Du XW (2009) One-step synthesis of fluorescent carbon nanoparticles by laser irradiation. J Mater Chem 19(4):484–488CrossRefGoogle Scholar
  30. 30.
    Yin B, Deng J, Peng X, Long Q, Zhao J, Lu Q, Chen Q, Li H, Tang H, Zhang Y, Yao S (2013) Green synthesis of carbon dots with down- and up-conversion fluorescent properties for sensitive detection of hypochlorite with a dual-readout assay. Analyst 138(21):6551–6557CrossRefGoogle Scholar
  31. 31.
    Dong Y, Wang R, Li H, Shao J, Chi Y, Lin X, Chen G (2012) Polyamine-functionalized carbon quantum dots for chemical sensing. Carbon 50(8):2810–2815CrossRefGoogle Scholar
  32. 32.
    Hou J, Dong J, Zhu H, Teng X, Ai S, Mang M (2015) A simple and sensitive fluorescent sensor for methyl parathion based on l-tyrosine methyl ester functionalized carbon dots. Biosens Bioelectron 68:20–26CrossRefGoogle Scholar
  33. 33.
    Wang Y, Kim SH, Feng L (2015) Highly luminescent N, S- co-doped carbon dots and their direct use as mercury(II) sensor. Anal Chim Acta 890:134–142CrossRefGoogle Scholar
  34. 34.
    Ding H, Wei JS, Xiong HM (2014) Nitrogen and sulfur co-doped carbon dots with strong blue luminescence. Nanoscale 6(22):13817–13823CrossRefGoogle Scholar
  35. 35.
    Huang S, Wang L, Huang C, Xie J, Su W, Sheng J, Xiao Q (2015) A carbon dots based fluorescent probe for selective and sensitive detection of hemoglobin. Sensors Actuators B Chem 221:1215–1222CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of ChemistryJilin UniversityChangchunChina
  2. 2.Shenyang Academy of Environmental Sciences, Liaoning Provincial Key Laboratory for Urban EcologyShenyangChina
  3. 3.Department of Ophthalmologythe Second Hospital of Jilin UniversityChangchunChina
  4. 4.State Key Laboratory on Integrated Optoelectronics, College of Electronic Science & EngineeringJilin UniversityChangchunChina

Personalised recommendations