Microchimica Acta

, 186:609 | Cite as

Detection of tiopronin in body fluids and pharmaceutical products using red-emissive DNA-stabilized silver nanoclusters as a fluorescent probe

  • Pu Zhang
  • Chunyan Jia
  • Yannan Zhao
  • Honghong Luo
  • Xin Tan
  • Xiaohong Ma
  • Yi WangEmail author
Original Paper


Tiopronin is a widely used drug for treatment of cystinuria, rheumatoid arthritis and hepatic disorders. It is also an antidote to heavy metal poisoning and a radioprotective agent. A method is described for rapid and sensitive determination of tiopronin using DNA-stabilized silver nanoclusters (DNA–AgNCs) as a fluorescent probe. Tiopronin can selectively bind to DNA–AgNCs to form a stable Ag-S bond upon which the red photoluminescence (best measured at excitation/emission wavelengths of 590/640 nm) is quenched. The finding is used to design an assay that has a linear response in the 1–150 nM tiopronin concentration range and a 270 pM limit of detection. Compared with previously reported methods, the present approach is more rapid, highly sensitive and selective. It has been successfully applied in the detection of tiopronin in spiked urine and serum, and in pharmaceutical products (tablets and injections).

Graphical abstract

An ultrasensitive and reliable method for tiopronin assay is developed using red-emissive silver nanoclusters as a fluorescent probe. It has been successfully applied in the determination of tiopronin in biological fluids and pharmaceutical products.


Nanoparticles Fluorescence Quenching Drug assay Pharmaceutical analysis 



This work was supported by the National Natural Science Foundation of China (No. 21775014), Scientific and Technological Research Program of Chongqing Municipal Education Commission (No. KJQN201800439), and Natural Science Foundation of Chongqing, China (No. cstc2017jcyjAX0368). Yi Wang was also sponsored by the Chongqing High-level Personnel of Special Support Program (Youth Top-notch Talent).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3730_MOESM1_ESM.docx (1.2 mb)
ESM 1 (DOCX 1242 kb)


  1. 1.
    Amor B, Mery C, Gery AD (1982) Tiopronin (N-[2-mercaptopropionyl] glycin) in rheumatoid arthritis. Arthritis Rheum 25:698–703CrossRefGoogle Scholar
  2. 2.
    Zhang J-G, Lindup WE (1996) Tiopronin protects against the nephrotoxicity of cisplatin in rat renal cortical slices in vitro. Toxicol Appl Pharmacol 141:425–433CrossRefGoogle Scholar
  3. 3.
    Huang T, Yang B, Yu Y, Zheng X, Duan G (2006) Reverse-phase high performance liquid chromatography for the determination of tiopronin in human plasma after derivatization with p-bromophenacyl bromide. Anal Chim Acta 565:178–182CrossRefGoogle Scholar
  4. 4.
    Kong D, Huang X, Lin B, Jiang J, Li Q, Wei Q, Chi Y, Chen G (2015) Determination of tiopronin based on the enhancement of Ru(bpy)3 2+ co-reactant electrochemiluminescence. Talanta 134:524–529CrossRefGoogle Scholar
  5. 5.
    Baghayeri M, Maleki B, Zarghani R (2014) Voltammetric behavior of tiopronin on carbon paste electrode modified with nanocrystalline Fe50Ni50 alloys. Mater Sci Eng C 44:175–182CrossRefGoogle Scholar
  6. 6.
    Sharma SS, Gupta YK (1997) Effect of antioxidants on cisplatin induced delay in gastric emptying in rats. Environ Toxicol Pharmacol 3:41–46CrossRefGoogle Scholar
  7. 7.
    Pérez-Ruiz T, Martínez-Lozano C, Baeyens WRG, Sanz A, San-Miguel MT (1998) Determination of tiopronin in pharmaceuticals using a chemiluminescent flow-injection method. J Pharm Biomed Anal 17:823–828CrossRefGoogle Scholar
  8. 8.
    Kuśmierek K, Bald E (2007) Simultaneous determination of tiopronin and d-penicillamine in human urine by liquid chromatography with ultraviolet detection. Anal Chim Acta 590:132–137CrossRefGoogle Scholar
  9. 9.
    Garcia MS, Sanchez-Pedreño C, Albero MI, Rodenas V (1993) Determination of penicillamine or tiopronin in pharmaceutical preparations by flow injection analysis. J Pharm Biomed Anal 11:633–638CrossRefGoogle Scholar
  10. 10.
    Xu J, Cai R, Wang J, Liu Z, Wu X (2005) Fluorometric assay of tiopronin based on inhibition of multienzyme redox system. J Pharm Biomed Anal 39:334–338CrossRefGoogle Scholar
  11. 11.
    Wang Y-Q, Ye C, Zhu Z-H, Hu Y-Z (2008) Cadmium telluride quantum dots as pH-sensitive probes for tiopronin determination. Anal Chim Acta 610:50–56CrossRefGoogle Scholar
  12. 12.
    Chen Z, Wang Z, Chen J, Gao W (2012) Label-free fluorescence turn on detection of tiopronin with tunable dynamic range based on the ensemble of alizarin red S/copper ion. Talanta 99:774–779CrossRefGoogle Scholar
  13. 13.
    Zhao Y, Baeyens WRG, Zhang X, Calokerinos AC, Nakashima K, Weken GVD (1997) Chemiluminescence determination of tiopronin by flow injection analysis based on cerium(IV) oxidation sensitized by quinine. Biomed Chromatogr 11:117–118CrossRefGoogle Scholar
  14. 14.
    Lu J, Lau C, Yagisawa S, Ohta K, Kai M (2003) A simple and sensitive chemiluminescence method for the determination of tiopronin for a pharmaceutical formulation. J Pharm Biomed Anal 33:1033–1038CrossRefGoogle Scholar
  15. 15.
    Matsuura K, Murai K, Fukano Y, Takashina H (2000) Simultaneous determination of tiopronin and its metabolites in rat blood by LC-ESI-MS-MS using methyl acrylate for stabilization of thiol group. J Pharm Biomed Anal 22:101–109CrossRefGoogle Scholar
  16. 16.
    Zhang P, Wang Y, Chang Y, Xiong ZH, Huang CZ (2013) Highly selective detection of bacterial alarmone ppGpp with an off-on fluorescent probe of copper-mediated silver nanoclusters. Biosens Bioelectron 49:433–437CrossRefGoogle Scholar
  17. 17.
    Richards CI, Choi S, Hsiang J-C, Antoku Y, Vosch T, Bongiorno A, Tzeng Y-L, Dickson RM (2008) Oligonucleotide-stabilized Ag nanocluster fluorophores. J Am Chem Soc 130:5038–5039CrossRefGoogle Scholar
  18. 18.
    Zhang L, Liang R-P, Xiao S-J, Bai J-M, Zheng L-L, Zhan L, Zhao X-J, Qiu J-D, Huang C-Z (2014) DNA-templated Ag nanoclusters as fluorescent probes for sensing and intracellular imaging of hydroxyl radicals. Talanta 118:339–347CrossRefGoogle Scholar
  19. 19.
    Jia C, Shang J, Wang Y, Bai L, Tong C, Chen Y, Zhang P (2018) Copper(II)–mediated sliver nanoclusters as a fluorescent platform for highly sensitive detection of alendronate sodium. Sensors Actuators B Chem 269:271–277CrossRefGoogle Scholar
  20. 20.
    Han B, Wang E (2011) Oligonucleotide-stabilized fluorescent silver nanoclusters for sensitive detection of biothiols in biological fluids. Biosens Bioelectron 26:2585–2589CrossRefGoogle Scholar
  21. 21.
    Ono A, Cao S, Togashi H, Tashiro M, Fujimoto T, Machinami T, Oda S, Miyake Y, Okamoto I, Tanaka Y (2008) Specific interactions between silver(I) ions and cytosine-cytosine pairs in DNA duplexes. Chem Commun 39:4825–4827CrossRefGoogle Scholar
  22. 22.
    Kypr J, Kejnovská I, Renčiuk D, Vorlíčková M (2009) Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Res 37:1713–1725CrossRefGoogle Scholar
  23. 23.
    Sang Y, Zhang L, Li YF, Chen LQ, Xu JL, Huang CZ (2010) A visual detection of hydrogen peroxide on the basis of Fenton reaction with gold nanoparticles. Anal Chim Acta 659:224–228CrossRefGoogle Scholar
  24. 24.
    Rosa M, Dias R, Miguel MG, Lindman B (2005) DNA-cationic surfactant interactions are different for double- and single-stranded DNA. Biomacromolecules 6:2164–2171CrossRefGoogle Scholar
  25. 25.
    Zhang L-P, Zhang X-X, Hu B, Shen L-M, Chen X-W, Wang J-H (2012) Fenton's reagent-tuned DNA-templated fluorescent silver nanoclusters as a versatile fluorescence probe and logic device. Analyst 137:4974–4980CrossRefGoogle Scholar
  26. 26.
    Chen W-Y, Lan G-Y, Chang H-T (2011) Use of fluorescent DNA-templated gold/silver nanoclusters for the detection of sulfide ions. Anal Chem 83:9450–9455CrossRefGoogle Scholar
  27. 27.
    Yuan Z, Cai N, Du Y, He Y, Yeung ES (2014) Sensitive and selective detection of copper ions with highly stable polyethyleneimine-protected silver nanoclusters. Anal Chem 86:419–426CrossRefGoogle Scholar
  28. 28.
    Zhou T, Huang Y, Li W, Cai Z, Luo F, Yang CJ, Chen X (2012) Facile synthesis of red-emitting lysozyme-stabilized Ag nanoclusters. Nanoscale 4:5312–5315CrossRefGoogle Scholar
  29. 29.
    Liu L, Wang Y, Fu W (2017) Highly selective detection of sulfide through poisoning silver nanoparticle catalysts. Sensors Actuators B Chem 247:414–420CrossRefGoogle Scholar
  30. 30.
    Huang Y, Zhao S, Shi M, Liang H (2011) A microchip electrophoresis strategy with online labeling and chemiluminescence detection for simultaneous quantification of thiol drugs. J Pharm Biomed Anal 55:889–894CrossRefGoogle Scholar
  31. 31.
    Chen F, Tu J, Liang C, Yang B, Chen C, Chen X, Cai C (2016) Fluorescent drug screening based on aggregation of DNA-templated silver nanoclusters, and its application to iridium (III) derived anticancer drugs. Microchim Acta 183:1571–1577CrossRefGoogle Scholar
  32. 32.
    Guo L, Chen D, Yang M (2017) DNA-templated silver nanoclusters for fluorometric determination of the activity and inhibition of alkaline phosphatase. Microchim Acta 184(184):2165–2170CrossRefGoogle Scholar
  33. 33.
    Peng J, Ling J, Zhang X-Q, Bai H-P, Zheng L, Cao Q-E, Ding Z-T (2015) Sensitive detection of mercury and copper ions by fluorescent DNA/Ag nanoclusters in guanine-rich DNA hybridization. Spectrochim Acta A 137:1250–1257CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of PharmacyChongqing Medical UniversityChongqingChina
  2. 2.College of ChemistryChongqing Normal UniversityChongqingChina

Personalised recommendations