Advertisement

Microchimica Acta

, 186:619 | Cite as

Fluorometric determination of nitrite through its catalytic effect on the oxidation of iodide and subsequent etching of gold nanoclusters by free iodine

  • Zhu Su
  • Xinyi Wang
  • Minchuan Luo
  • Liang Li
  • Yifeng Tu
  • Jilin YanEmail author
Original Paper
  • 22 Downloads

Abstract

A method for sensitive detection of nitrite is presented. It is found that the red fluorescence of gold nanoclusters (with excitation/emission maxima at 365/635 nm) is quenched by traces of iodine via etching. Free iodide is formed by oxidation of iodide by bromate anion under the catalytic effect of nitrite. This catalytic process provides a sensitive means for nitrite detection. Under the optimal conditions, fluorescence linearly dropos in the 10 nM to 0.8 μM nitrite concentration range. The limit of detection is 1.1 nM. This is a few orders of magnitude lower than the maximum concentration allowed by authorities.

Graphical abstract

Schematic representation of a method for detection of nitrite via a redox reaction. Iodine was produced in the reaction and subsequently quenched the fluorescence from gold nanoclusters by etching their metallic cores, and a sensitive assay for nitrite down to 1.1 nM was developed.

Keywords

Nitrite Gold nanocluster Fluorescence quenching Iodine Water samples Kinetic fluorescence 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21305100), the Project of Scientific and Technologic Infrastructure of Suzhou (SZS201708) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Compliance with ethical standards

The authors declare that they have no competing interests.

Supplementary material

604_2019_3729_MOESM1_ESM.doc (3.5 mb)
ESM 1 (DOC 3560 kb)

References

  1. 1.
    Lundberg JO, Gladwin MT, Ahluwalia A, Benjamin N, Bryan NS, Butler A, Cabrales P, Fago A, Feelisch M, Ford PC, Freeman BA, Frenneaux M, Friedman J, Kelm M, Kevil CG, Kim-Shapiro DB, Kozlov AV, Lancaster JR, Lefer DJ, McColl K, McCurry K, Patel RP, Petersson J, Rassaf T, Reutov VP, Richter-Addo GB, Schechter A, Shiva S, Tsuchiya K, van Faassen EE, Webb AJ, Zuckerbraun BS, Zweier JL, Weitzberg E (2009) Nitrate and nitrite in biology, nutrition and therapeutics. Nat Chem Biol 5:865–869.  https://doi.org/10.1038/nchembio.260 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Cammack R, Joannou CL, Cui X, Martinez CT, Maraj SR, Hughes MN (1999) Nitrite and nitrosyl compounds in food preservation. Biochim Biophys Acta 1411:475–488.  https://doi.org/10.1016/S0005-2728(99)00033-X CrossRefPubMedGoogle Scholar
  3. 3.
    Huang S, Li L, Mei L, Zhou J, Guo F, Wang A, Feng J (2016) Electrochemical sensor for nitrite using a glassy carbon electrode modified with gold-copper nanochain networks. Microchim Acta 183:791–797.  https://doi.org/10.1007/s00604-015-1717-z CrossRefGoogle Scholar
  4. 4.
    Wang Q, Huang H, Ning B, Li M, He L (2015) A highly sensitive and selective spectrofluorimetric method for the determination of nitrite in food products. Food Anal Methods 9:1293–1300.  https://doi.org/10.1007/s12161-015-0306-4 CrossRefGoogle Scholar
  5. 5.
    Bharath G, Madhu R, Chen S, Veeramani V, Mangalaraja D, Ponpandian N (2015) Solvent-free mechanochemical synthesis of graphene oxide and Fe3O4–reduced grapheneoxide nanocomposites for sensitive detection of nitrite. J Mater Chem A 3:15529–15539.  https://doi.org/10.1039/c5ta03179f CrossRefGoogle Scholar
  6. 6.
    Kumar A, Gonc JM, Sukeri A, Araki K, Bertotti M (2018) Correlating surface growth of nanoporous gold with electrodeposition parameters to optimize amperometric sensing of nitrite. Sensors Actuators B Chem 263:237–247.  https://doi.org/10.1016/j.snb.2018.02.125 CrossRefGoogle Scholar
  7. 7.
    Helaleh MI, Korenaga T (2000) Ion chromatographic method for simultaneous determination of nitrate and nitrite in human saliva. J Chromatogr B 744:433–437.  https://doi.org/10.1016/S0378-4347(00)00264-4 CrossRefGoogle Scholar
  8. 8.
    Shariati-Rad M, Irandoust M, Niazi F (2015) A sensitive spectrofluorimetric method for the determination of nitrite in agricultural samples. Food Anal Methods 8:1691–1698.  https://doi.org/10.1007/s12161-014-0045-y CrossRefGoogle Scholar
  9. 9.
    Zhang H, Kang S, Wang G, Zhang Y, Zhao H (2016) Fluorescence determination of nitrite in water using prawn-shell derived nitrogen-doped carbon nanodots as fluorophores. ACS Sens 1:875–881.  https://doi.org/10.1021/acssensors.6b00269 CrossRefGoogle Scholar
  10. 10.
    Manoj D, Saravanan R, Santhanalakshmi J, Agarwal S, Gupta VK, Boukherroub R (2018) Towards green synthesis of monodisperse cu nanoparticles: an efficient and high sensitive electrochemical nitrite sensor. Sensors Actuators B Chem 266:873–882.  https://doi.org/10.1016/j.snb.2018.03.141 CrossRefGoogle Scholar
  11. 11.
    Chen L, Wang C, Yuan Z, Chang H (2015) Fluorescent gold nanoclusters: recent advances in sensing and imaging. Anal Chem 87:216–229.  https://doi.org/10.1021/ac503636j CrossRefPubMedGoogle Scholar
  12. 12.
    Lan G, Huang C, Chang H (2010) Silver nanoclusters as fluorescent probes for selective and sensitive detection of copper ions. Chem Commun 46:1257–1259.  https://doi.org/10.1039/b920783j CrossRefGoogle Scholar
  13. 13.
    Cao D, Fan J, Qiu J, Tu Y, Yan J (2013) Masking method for improving selectivity of gold nanoclusters in fluorescence determination of mercury and copper ions. Biosens Bioelectron 42:47–50.  https://doi.org/10.1016/j.bios.2012.10.084 CrossRefPubMedGoogle Scholar
  14. 14.
    Tao Y, Li M, Ren J, Qu X (2016) Metal nanoclusters: novel probes for diagnostic and therapeutic applications. Chem Soc Rev 47:8636–8663.  https://doi.org/10.1039/c5cs00607d CrossRefGoogle Scholar
  15. 15.
    Luo M, Di J, Li L, Tu Y, Yan J (2018) Copper ion detection with improved sensitivity through catalytic quenching of gold nanocluster fluorescence. Talanta 187:231–236.  https://doi.org/10.1016/j.talanta.2018.05.047 CrossRefPubMedGoogle Scholar
  16. 16.
    Li R, Xu P, Tu Y, Yan J (2018) Albumin-stabilized gold nanoclusters as viable fluorescent probes in non-titrimetric iodometry for the detection of oxidizing analytes Microchim. Acta 143:497–502.  https://doi.org/10.1007/s00604-015-1661-y CrossRefGoogle Scholar
  17. 17.
    Yang Y, Han A, Li R, Fang G, Liu J, Wang S (2017) Synthesis of highly fluorescent gold nanoclusters and their use in sensitive analysis of metal ions. Analyst 142:4486–4493.  https://doi.org/10.1039/c7an01348e CrossRefPubMedGoogle Scholar
  18. 18.
    Kermani HA, Hosseini M, Miti A, Dadmehr M, Zuccheri G, Hosseinkhani S, Ganjali MR (2018) A colorimetric assay of DNA methyltransferase activity based on peroxidase mimicking of DNA template Ag/Pt bimetallic nanoclusters. Anal Bioanal Chem 410:4943–4952.  https://doi.org/10.1007/s00216-018-1143-2 CrossRefPubMedGoogle Scholar
  19. 19.
    Xu H, Zhu H, Sun M, Yu H, Li H, Ma F, Wang S (2014) Graphene oxide supported gold nanoclusters for the sensitive and selective detection of nitrite ions. Analyst 140:1678–1685.  https://doi.org/10.1039/c4an02181a CrossRefGoogle Scholar
  20. 20.
    Xiang G, Wang Y, Zhang H, Fan H, Fan L, He L (2018) Carbon dots based dual-emission silica nanoparticles as ratiometric fluorescent probe for nitrite determination in food samples. Food Chem 260:13–18.  https://doi.org/10.1016/j.food.chem.2018.03.150 CrossRefPubMedGoogle Scholar
  21. 21.
    Wang Y, Tan X, Xue J, Li G, Shi L, Yang H, Liu L, Zhou B, Xiao X (2011) Determination of trace formaldehyde in blood plasma by resonance fluorescence technology. Anal Chim Acta 690:234–239.  https://doi.org/10.1016/j.aca.2011.02.030 CrossRefPubMedGoogle Scholar
  22. 22.
    Sheng L, Zhao Z, Su B, Tao C, Jing W (2017) Kinetic determination of lanthanum(III) by the catalytic effect on the oxidation of fluorescent safranine dyes with potassium bromate. Anal Sci 33:1401–1405.  https://doi.org/10.2116/analsci.33.1401 CrossRefPubMedGoogle Scholar
  23. 23.
    Bai LS, Chi ZH (2001) Kinetic spectrophotometric determination of nitrite by the catalytic oxidation of bromocresol purple with potassium bromate Chin. J Anal Chem 29:926–929.  https://doi.org/10.3321/j.issn:0253-3820.2001.08.016 CrossRefGoogle Scholar
  24. 24.
    Balasubramanian P, Settu R, Chen S, Chen T, Sharmila G (2018) A new electrochemical sensor for highly sensitive and selective detection of nitrite in food samples based on sonochemical synthesized calcium ferrite (CaFe2O4 ) .clusters modified screen printed carbon electrode. J Colloid Interface Sci 524:417–426.  https://doi.org/10.1016/j.jcis.2018.04.036 CrossRefPubMedGoogle Scholar
  25. 25.
    Wang X, Tan W, Ji H, Liu F, Wu D, Ma J (2018) Facile electrosynthesis of nickel hexacyanoferrate/poly(2,6-diaminopyridine) hybrids as highly sensitive nitrite sensor. Sensors Actuators B Chem 264:240–248.  https://doi.org/10.1016/j.snb.2018.02.171 CrossRefGoogle Scholar
  26. 26.
    Huang S, Liu L, Mei L, Zhou J, Guo F, Wang A, Fen J (2016) Electrochemical sensor for nitrite using a glassy carbon electrode modified with gold-copper nanochain networks. Microchim Acta 183:791–797.  https://doi.org/10.1007/s00604-015-1717-z CrossRefGoogle Scholar
  27. 27.
    Lo HS, Lo KW, Yeung CF, Wong CY (2017) Rapid visual and spectrophotometric nitrite detection by cyclometalated ruthenium complex. Anal Chim Acta 990:135–140.  https://doi.org/10.1016/j.aca.2017.07.018 CrossRefPubMedGoogle Scholar
  28. 28.
    Feng Z, Li Z, Zhang X, Shi Y, Zhou N (2017) Nitrogen-doped carbon quantum dots as fluorescent probes for sensitive and selective detection of nitrite. Molecules 22:2061–2071.  https://doi.org/10.3390/molecules22122061 CrossRefPubMedCentralGoogle Scholar
  29. 29.
    Zhang H, Kang S, Wang G, Zhang Y, Zhao H (2016) Fluorescence determination of nitrite in water using prawn-shell derived nitrogen-doped carbon nanodosas fluorophores. ACS Sens 1:875−881.  https://doi.org/10.1021/acssensors.6b00269 CrossRefGoogle Scholar
  30. 30.
    Ren H, Fan WB, Yu L (2018) Polyethylenimine-capped CdS quantum dots for sensitive and selective detection of nitrite in vegetables and eater. J Agric Food Chem 66:8851–8858.  https://doi.org/10.1021/acs.jafc.8b01951 CrossRefPubMedGoogle Scholar
  31. 31.
    Gu B, Huang L, Hu J, Liu J, Su W, Duan X (2016) Highly selective ansensitive fluorescent probe for the detection of nitrite. Talanta 152:155–161.  https://doi.org/10.1016/j.talanta.2016.01.059 CrossRefPubMedGoogle Scholar
  32. 32.
    Liu Y, Xue H, Liu J, Wang Q, Wang L (2018) Carbon quantum dot-basd fluorometric nitrite assay by exploiting the oxidation of iron(ii) to iron(iii). Microchim Acta 185:129.  https://doi.org/10.1007/s00604-018-2668-y CrossRefGoogle Scholar
  33. 33.
    Wang Q, Huang H, Ning B, Li M, He L (2016) A highly sensitive and selective spectrofluorimetric method for the determination of nitrite in food products. Food Anal Methods 9:1293–1300.  https://doi.org/10.1007/s12161-015-0306-4 CrossRefGoogle Scholar
  34. 34.
    Wang L, Chen J, Chen H, Zhou C, Ling B, Fu J (2011) A sensitive fluorimetric method for determination of trace amounts of nitrite based on luminescence energy transfer. J Lumin 131:83–87.  https://doi.org/10.1016/j.jlumin.2010.09.003 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Zhu Su
    • 1
  • Xinyi Wang
    • 1
  • Minchuan Luo
    • 1
  • Liang Li
    • 2
  • Yifeng Tu
    • 1
  • Jilin Yan
    • 1
    Email author
  1. 1.The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials ScienceSoochow UniversitySuzhouChina
  2. 2.School of Materials Science and EngineeringWuhan Institute of TechnologyWuhanChina

Personalised recommendations