Advertisement

Microchimica Acta

, 186:600 | Cite as

Preparation of a hydrophilic interaction liquid chromatography material by sequential electrostatic deposition of layers of polyethyleneimine and hyaluronic acid for enrichment of glycopeptides

  • Qiliang Zhan
  • Hongli ZhaoEmail author
  • Yayun Hong
  • Chenlu Pu
  • Yuye Liu
  • Minbo Lan
Original Paper

Abstract

A hydrophilic interaction liquid chromatography (HILIC) material with application in glycoproteomics was obtained by sequential deposition of polyethyleneimine (PEI) and hyaluronic acid (HA) on a negatively charged substrate by means of electrostatic self-assembly. This kind of surface modification endows the material with excellent hydrophilicity and warrants efficient glycopeptides enrichment. The feasibility of this enrichment was verified by using dendritic mesoporous silica nanoparticles (DMSNs) and magnetic graphene oxide (MagG) as negatively charged substrates for PEI and HA adhesion. The two final products (DMSNs@PEI@HA and MagG@PEI@HA) exhibit high enrichment selectivity (molar ratios of IgG and BSA digests = 1:500 and 1:1000), sensitivity (detection limit, 2 fmol/μL), recovery (>90%) and enrichment capacity (300 mg/g). When using DMSNs@PEI@HA, 419 N-glycopeptides derived from 105 glycoproteins were identified. When using MagG@PEI@HA, 376 N-glycopeptides derived from 102 glycoproteins were identified, both from a 2 μL serum sample. This is better than by methods described in previous reports.

Graphical abstract

Schematic representation of hydrophilic modification of negatively charged nanomaterial substrates by electrostatic self-assembly techniques to obtain hydrophilic interaction liquid chromatography (HILIC) materials for enrichment of N-glycopeptides.

Keywords

Post-translational modification Mass spectrometry Functional nanomaterial Electrostatic self-assembly Glycopeptides enrichment 

Notes

Acknowledgements

This work was supported by Natural Science Foundation of Shanghai (No. 19ZR1412000) and the Fundamental Research Funds for the Central Universities (No. 50321101917022).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3712_MOESM1_ESM.pdf (2 mb)
ESM 1 (PDF 2020 kb)

References

  1. 1.
    Hart GW, Copeland RJ (2010) Glycomics hits the big time. Cell 143(5):672–676CrossRefGoogle Scholar
  2. 2.
    Lowe JB (2001) Glycosylation, immunity, and autoimmunity. Cell 104(6):809–812CrossRefGoogle Scholar
  3. 3.
    Ohtsubo K, Marth JD (2006) Glycosylation in cellular mechanisms of health and disease. Cell 126(5):855–867CrossRefGoogle Scholar
  4. 4.
    Helenius A, Aebi M (2001) Intracellular functions of N-linked glycans. Science 291(5512):2364–2369CrossRefGoogle Scholar
  5. 5.
    Dosekova E, Filip J, Bertok T, Both P, Kasak P, Tkac J (2017) Nanotechnology in Glycomics: applications in diagnostics, therapy, imaging, and separation processes. Med Res Rev 37(3):514–626CrossRefGoogle Scholar
  6. 6.
    Hu Y, Xia Q, Huang W, Hou X, Tian M (2017) Boronate-modified hollow molecularly imprinted polymers for selective enrichment of glycosides. Microchim Acta 185(1):46CrossRefGoogle Scholar
  7. 7.
    Liu CM, Li YM, Semenov M, Han C, Baeg GH, Tan Y, Zhang ZH, Lin XH, He X (2002) Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 108(6):837–847CrossRefGoogle Scholar
  8. 8.
    Ludwig JA, Weinstein JN (2005) Biomarkers in cancer staging, prognosis and treatment selection. Nat Rev Cancer 5(11):845–856CrossRefGoogle Scholar
  9. 9.
    Jin S, Liu L, Zhou P (2018) Amorphous titania modified with boric acid for selective capture of glycoproteins. Microchim Acta 185(6):308CrossRefGoogle Scholar
  10. 10.
    Sun N, Wang J, Yao J, Chen H, Deng C (2019) Magnetite nanoparticles coated with mercaptosuccinic acid-modified mesoporous titania as a hydrophilic sorbent for glycopeptides and phosphopeptides prior to their quantitation by LC-MS/MS. Microchim Acta 186(3):159CrossRefGoogle Scholar
  11. 11.
    Wang J, Wang Z, Sun N, Deng C (2019) Immobilization of titanium dioxide/ions on magnetic microspheres for enhanced recognition and extraction of mono- and multi-phosphopeptides. Microchim Acta 186(4):236CrossRefGoogle Scholar
  12. 12.
    Zhang K, Hu D, Deng S, Han M, Wang X, Liu H, Liu Y, Xie M (2019) Phytic acid functionalized Fe3O4 nanoparticles loaded with Ti(IV) ions for phosphopeptide enrichment in mass spectrometric analysis. Microchim Acta 186(2):68CrossRefGoogle Scholar
  13. 13.
    Dominguez-Vega E, Tengattini S, Peintner C, van Angeren J, Temporini C, Haselberg R, Massolini G, Somsen GW (2018) High-resolution glycoform profiling of intact therapeutic proteins by hydrophilic interaction chromatography-mass spectrometry. Talanta 184:375–381CrossRefGoogle Scholar
  14. 14.
    Kozlik P, Goldman R, Sanda M (2018) Hydrophilic interaction liquid chromatography in the separation of glycopeptides and their isomers. Anal Bioanal Chem 410(20):5001–5008CrossRefGoogle Scholar
  15. 15.
    Bi CF, Zhao YR, Shen LJ, Zhang K, He XW, Chen LX, Zhang YK (2015) Click synthesis of hydrophilic maltose-functionalized Iron oxide magnetic nanoparticles based on dopamine anchors for highly selective enrichment of Glycopeptides. ACS Appl Mater Interfaces 7(44):24670–24678CrossRefGoogle Scholar
  16. 16.
    Feng XY, Deng CH, Gao MX, Yan GQ, Zhang XM (2018) Novel synthesis of glucose functionalized magnetic graphene hydrophilic nanocomposites via facile thiolation for high-efficient enrichment of glycopeptides. Talanta 179:377–385CrossRefGoogle Scholar
  17. 17.
    Shao WY, Liu JX, Yang KG, Liang Y, Weng YJ, Li SW, Liang Z, Zhang LH, Zhang YK (2016) Hydrogen-bond interaction assisted branched copolymer HILIC material for separation and N-glycopeptides enrichment. Talanta 158:361–367CrossRefGoogle Scholar
  18. 18.
    Li JN, Wang FJ, Wan H, Liu J, Liu ZY, Cheng K, Zou HF (2015) Magnetic nanoparticles coated with maltose-functionalized polyethyleneimine for highly efficient enrichment of N-glycopeptides. J Chromatogr A 1425:213–220CrossRefGoogle Scholar
  19. 19.
    Jin T, Xiong ZC, Zhu X, Mehio N, Chen YJ, Hu J, Zhang WB, Zou HF, Liu HL, Dai S (2015) Template-free synthesis of mesoporous polymers for highly selective enrichment of Glycopeptides. ACS Macro Lett 4(5):570–574CrossRefGoogle Scholar
  20. 20.
    Wang YL, Liang S, Chen BD, Guo FF, Yu SL, Tang YL (2013) Synergistic removal of Pb(II), cd(II) and humic acid by Fe3O4@mesoporous silica-graphene oxide composites. PLoS One 8(6):8CrossRefGoogle Scholar
  21. 21.
    Jiang B, Wu Q, Deng N, Chen YB, Zhang LH, Liang Z, Zhang YK (2016) Hydrophilic GO/Fe3O4/au/PEG nanocomposites for highly selective enrichment of glycopeptides. Nanoscale 8(9):4894–4897CrossRefGoogle Scholar
  22. 22.
    Hong YY, Yao YT, Zhao HL, Sheng QY, Ye ML, Yu CZ, Lan MB (2018) Dendritic mesoporous silica nanoparticles with abundant Ti4+ for Phosphopeptide enrichment from Cancer cells with 96% specificity. Anal Chem 90(12):7617–7625CrossRefGoogle Scholar
  23. 23.
    Hong YY, Zhao H, Pu CL, Zhan QL, Sheng QY, Lan MB (2018) Hydrophilic Phytic acid-coated magnetic graphene for titanium(IV) immobilization as a novel hydrophilic interaction liquid chromatography-immobilized metal affinity chromatography platform for Glyco- and Phosphopeptide enrichment with controllable selectivity. Anal Chem 90(18):11008–11015CrossRefGoogle Scholar
  24. 24.
    Pu C, Zhao H, Hong Y, Zhan Q, Lan M (2019) Elution-free ultra-sensitive enrichment for glycopeptides analyses: using a degradable, post-modified Ce-metal-organic framework. Anal Chim Acta 1045:123–131CrossRefGoogle Scholar
  25. 25.
    Li XT, Xue M, Raabe OG, Aaron HL, Eisen EA, Evans JE, Hayes FA, Inaga S, Tagmount A, Takeuchi M, Vulpe C, Zink JI, Risbud SH, Pinkerton KE (2015) Aerosol droplet delivery of mesoporous silica nanoparticles: a strategy for respiratory-based therapeutics. Nanomed-Nanotechnol Biol Med 11(6):1377–1385CrossRefGoogle Scholar
  26. 26.
    Tiwari S, Bahadur P (2019) Modified hyaluronic acid based materials for biomedical applications. Int J Biol Macromol 121:556–571CrossRefGoogle Scholar
  27. 27.
    Zhang M, Zhao X, Fang Z, Niu Y, Lou J, Wu Y, Zou S, Xia S, Sun M, Du F (2017) Fabrication of HA/PEI-functionalized carbon dots for tumor targeting, intracellular imaging and gene delivery. RSC Adv 7(6):3369–3375CrossRefGoogle Scholar
  28. 28.
    Sun NR, Wang JW, Yao JZ, Deng CH (2017) Hydrophilic mesoporous silica materials for highly specific enrichment of N-linked Glycopeptide. Anal Chem 89(3):1764–1771CrossRefGoogle Scholar
  29. 29.
    Bi C, Liang Y, Shen L, Tian S, Zhang K, Li Y, He X, Chen L, Zhang Y (2018) Maltose-functionalized hydrophilic magnetic nanoparticles with polymer brushes for highly selective enrichment of N-linked Glycopeptides. ACS Omega 3(2):1572–1580CrossRefGoogle Scholar
  30. 30.
    Huan WW, Zhang JS, Qin H, Huan F, Wang BC, Wu MJ, Li J (2019) A magnetic nanofiber-based zwitterionic hydrophilic material for the selective capture and identification of glycopeptides. Nanoscale 11(22):10952–10960CrossRefGoogle Scholar
  31. 31.
    Chen YJ, Xiong ZC, Zhang LY, Zhao JY, Zhang QQ, Peng L, Zhang WB, Ye ML, Zou HF (2015) Facile synthesis of zwitterionic polymer-coated core-shell magnetic nanoparticles for highly specific capture of N-linked glycopeptides. Nanoscale 7(7):3100–3108CrossRefGoogle Scholar
  32. 32.
    Zhang QQ, Huang YY, Jiang BY, Hu YJ, Xie JJ, Gao X, Jia B, Shen HL, Zhang WJ, Yang PY (2018) In situ synthesis of magnetic mesoporous phenolic resin for the selective enrichment of Glycopeptides. Anal Chem 90(12):7357–7363CrossRefGoogle Scholar
  33. 33.
    Zhang YW, Li Z, Zhao Q, Zhou YL, Liu HW, Zhang XX (2014) A facilely synthesized amino-functionalized metal-organic framework for highly specific and efficient enrichment of glycopeptides. Chem Commun 50(78):11504–11506CrossRefGoogle Scholar
  34. 34.
    Li YL, Wang JW, Sun NR, Deng CH (2017) Glucose-6-phosphate-functionalized magnetic microsphere as novel hydrophilic probe for specific capture of N-linked Glycopeptides. Anal Chem 89(20):11151–11158CrossRefGoogle Scholar
  35. 35.
    Liu QJ, Xie YQ, Deng CH, Lie Y (2017) One-step synthesis of carboxyl-functionalized metal-organic framework with binary ligands for highly selective enrichment of N-linked glycopeptides. Talanta 175:477–482CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Qiliang Zhan
    • 1
  • Hongli Zhao
    • 1
    Email author
  • Yayun Hong
    • 1
  • Chenlu Pu
    • 1
  • Yuye Liu
    • 1
  • Minbo Lan
    • 1
    • 2
  1. 1.Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghaiPeople’s Republic of China
  2. 2.State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiPeople’s Republic of China

Personalised recommendations