Microchimica Acta

, 186:633 | Cite as

Cysteine-assisted photoelectrochemical immunoassay for the carcinoembryonic antigen by using an ITO electrode modified with C3N4-BiOCl semiconductor and CuO nanoparticles as antibody labels

  • Bing ZhangEmail author
  • Yejing Jia
  • Jing Wang
  • Xing Hu
  • Zhihuan Zhao
  • Yan ChengEmail author
Original Paper


A sensitive photoelectrochemical (PEC) immunoassay for the carcinoembryonic antigen (CEA) is described that is based on the use of C3N4-BiOCl semiconductor on an ITO electrode. The photocurrent of the modified electrode was measured under visible light illumination. It increased in presence of L-cysteine due to rapid separation of the photoexcited electrons and holes. A sandwich-type immunoassay in a 96-well microtiter plate format used CuO nanoparticles as label for the secondary antibody. The Cu2+ is released from the CuO in the sandwich complex by treatment with acid. The free Cu2+ combined with both the cysteine and the electron receptors of C3N4 and BiOCl. Under optimal conditions, this dual action immensely decreases the photocurrent of the PEC system, and the response is inversely proportional to the CEA concentrations from 0.1 pg mL−1 to 10 ng mL−1 at the working voltage of 0 V (vs. SCE). The detection limit is 0.1 pg mL−1, and the method is exhibited satisfactory selective, repeatable and stable.

Graphical abstract

Schematic representation of an immunoassay based on cysteine-assisted C3N4-BiOCl photoelectrochemical platform. CuO nanoparticles were utilized as labels in immunocomplex to release Cu2+ in acidic condition. Carcinoembryonic antigen in sample was detected sensitively by dual function of Cu2+ with cysteine and C3N4-BiOCl semiconductor.


Sandwich immunoassay Tumor marker Two-dimension nanomaterials Cu2+ 



The National Natural Science Foundation of China (Grant No. 21605111) and Natural Science Foundation of Shanxi Province (No. 201601D021037) are gratefully acknowledged.

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3706_MOESM1_ESM.doc (3.3 mb)
ESM 1 (DOC 3415 kb)


  1. 1.
    Fang C, Chou C, Yang Y, Wei-Kai T, Wang Y, Chan Y (2018) Multiplexed detection of tumor markers with multicolor polymer dot-based immunochromatography test strip. Anal Chem 90:2134–2140CrossRefGoogle Scholar
  2. 2.
    Zhang D, Li W, Ma Z, Han H (2019) Improved ELISA for tumor marker detection using electro-readout-mode based on label triggered degradation of methylene blue. Biosens Bioelectron 126:800–805CrossRefGoogle Scholar
  3. 3.
    Babamiri B, Hallaj R, Salimi A (2018) Ultrasensitive electrochemiluminescence immunoassay for simultaneous determination of CA125 and CA15-3 tumor markers based on PAMAM-sulfanilic acid-Ru(bpy)3 2+ and PAMAM-CdTe@CdS nanocomposite. Biosens Bioelectron 99:353–360CrossRefGoogle Scholar
  4. 4.
    Zhang K, Lv S, Lu M, Tang D (2018) Photoelectrochemical biosensing of disease marker on p-type cu-doped Zn0.3Cd0.7S based on RCA and exonuclease III amplification. Biosens Bioelectron 117:590–596CrossRefGoogle Scholar
  5. 5.
    Zhang B, Ding C (2016) Displacement-type amperometric immunosensing platform for sensitive determination of tumour markers. Biosens Bioelectron 82:112–118CrossRefGoogle Scholar
  6. 6.
    Zheng J, Shen Y, Xu Z, Yuan Z, He Y, Wei C, Er M, Yin J, Chen H (2018) Near-infrared off-on fluorescence probe activated by NTR for in vivo hypoxia imaging. Biosens Bioelectron 119:141–148CrossRefGoogle Scholar
  7. 7.
    Shao F, Jiao L, Miao L, Wei Q, Li H (2017) A pH indicator-linked immunosorbent assay following direct amplification strategy for colorimetric detection of protein biomarkers. Biosens Bioelectron 90:1–5CrossRefGoogle Scholar
  8. 8.
    Tang J, Xiong P, Cheng Y, Chen Y, Peng S, Zhu Z (2019) Enzymatic oxydate-triggered AgNPs etching: a novel signal-on photoelectrochemical immunosensing platform based on Ag@AgCl nanocubes loaded RGO plasmonic heterostructure. Biosens Bioelectron 130:125–131CrossRefGoogle Scholar
  9. 9.
    Tang J, Tang D (2015) Non-enzymatic electrochemical immunoassay using noble metal nanoparticles: a review. Microchim Acta 182:2077–2089CrossRefGoogle Scholar
  10. 10.
    Zhou Q, Xue H, Zhang Y, Lv Y, Li H, Liu S, Shen Y, Zhang Y (2018) Metal-free all-carbon nanohybrid for ultrasensitive photoelectrochemical immunosensing of alpha-fetoprotein. ACS Sensors 3:1385–1391Google Scholar
  11. 11.
    Jung H, Cho K, Kim K, Yoo H, Al-Saggaf A, Gereige I, Jung H (2018) Highly efficient and stable CO2 reduction photocatalyst with a hierarchical structure of mesoporous TiO2 on 3D graphene with few-layered MoS2. ACS Sustain Chem Eng 6:5718–5724CrossRefGoogle Scholar
  12. 12.
    Pang F, Zhang R, Lan D, Ge J (2018) Synthesis of magnetite–semiconductor–metal trimer nanoparticles through functional modular assembly: a magnetically separable photocatalyst with photothermic enhancement for water reduction. ACS Appl Mater Interfaces 10:4929–4936CrossRefGoogle Scholar
  13. 13.
    Pomilla F, Cortes M, Hamilton J, Molinari R, Barbieri G, Marcì G, Palmisano L, Sharma P, Brown A, Byrne J (2018) An investigation into the stability of graphitic C3N4 as a photocatalyst for CO2 reduction. J Phys Chem C 122:28727–28738CrossRefGoogle Scholar
  14. 14.
    Zhao Y, Li R, Mu L, Li C (2017) Significance of crystal morphology controlling in semiconductor-based photocatalysis: a case study on BiVO4 photocatalyst. Cryst Growth Des 17:2923–2928CrossRefGoogle Scholar
  15. 15.
    Freitas D, González-Moya J, Soares T, Silva R, Oliveira D, Mansur H, Machado G, Navarro M (2018) Enhanced visible-light photoelectrochemical conversion on TiO2 nanotubes with Bi2S3 quantum dots obtained by in situ electrochemical method. ACS Appl. Energy Mater. 1:3636–3645Google Scholar
  16. 16.
    Hu Y, Huang Y, Wang Z, Wang Y, Ye X, Wong W, Li C, Sun D (2018) Gold/WS2 nanocomposites fabricated by in-situ ultrasonication and assembling for photoelectrochemical immunosensing of carcinoembryonic antigen. Microchim Acta 185:570CrossRefGoogle Scholar
  17. 17.
    Zhang N, Yang M, Liu S, Sun Y, Xu Y (2015) Waltzing with the versatile platform of graphene to synthesize composite photocatalysts. Chem Rev 115:10307–10377CrossRefGoogle Scholar
  18. 18.
    Asahi R, Morikawa T, Irie H, Ohwaki T (2014) Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: designs, developments, and prospects. Chem Rev 114:9824–9852CrossRefGoogle Scholar
  19. 19.
    Song K, Ding C, Zhang B, Chang H, Zhao Z, Wei W, Wang J (2018) Dye sensitized photoelectrochemical immunosensor for the tumor marker CEA by using a flower-like 3D architecture prepared from graphene oxide and MoS2. Microchim Acta 185:310CrossRefGoogle Scholar
  20. 20.
    Sun Y, Fan J, Cui L, Ke W, Zheng F, Zhao Y (2019) Fluorometric nanoprobes for simultaneous aptamer-based detection of carcinoembryonic antigen and prostate specific antigen. Microchim Acta 186:152CrossRefGoogle Scholar
  21. 21.
    Wang H, Qi C, He W, Wang M, Jiang W, Yin H (2018) A sensitive photoelectrochemical immunoassay of N6-methyladenosine based on dual-signal amplification strategy: Ru doped in SiO2 nanosphere and carboxylated g-C3N4. Biosens Bioelectron 99:281–288CrossRefGoogle Scholar
  22. 22.
    Ong W, Tan L, Ng Y, Yong S, Chai S (2016) Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability. Chem Rev 116:7159–7329CrossRefGoogle Scholar
  23. 23.
    Pham T, Shin E (2018) Influence of g-C3N4 precursors in g-C3N4/NiTiO3 composites on photocatalytic behavior and the interconnection between g-C3N4 and NiTiO3. Langmuir 34:13144–13154CrossRefGoogle Scholar
  24. 24.
    You Y, Wang S, Xiao K, Ma T, Zhang Y, Huang H (2018) Z-scheme g-C3N4/Bi4NbO8Cl heterojunction for enhanced photocatalytic hydrogen production. ACS Sustain Chem Eng 6:16219–16227CrossRefGoogle Scholar
  25. 25.
    Hua S, Qu D, An L, Jiang W, Wen Y, Wang X, Sun Z (2019) Highly efficient p-type Cu3P/n-type g-C3N4 photocatalyst through Z-scheme charge transfer route. Appl Catal B-Environ 240:253–261Google Scholar
  26. 26.
    Mo Z, Xu H, Chen Z, She X, Song Y, Lian J, Zhu X, Yan P, Lei Y, Yuan S, Li H (2019) Construction of MnO2/monolayer g-C3N4 with Mn vacancies for Z-scheme overall water splitting. Appl Catal B Environ 241:452–460CrossRefGoogle Scholar
  27. 27.
    Zhong Y, Chen W, Yu S, Xie Z, Wei S, Zhou Y (2018) CdSe quantum dots/g-C3N4 heterostructure for efficient H2 production under visible light irradiation. ACS Omega 3:17762–17769CrossRefGoogle Scholar
  28. 28.
    Zhang Y, Xu R, Kang Q, Zhang Y, We Q, Wang Y, Ju H (2018) Ultrasensitive photoelectrochemical biosensing platform for detecting n-terminal pro-brain natriuretic peptide based on SnO2/SnS2/mpg-C3N4 amplified by PbS/SiO2. ACS Appl Mater Interfaces 10:31080–31087CrossRefGoogle Scholar
  29. 29.
    Manwar N, Chilkalwar A, Nanda K, Chaudhary Y, Subrt J, Rayalu S, Labhsetwar N (2016) Ceria supported Pt/PtO-nanostructures: efficient photocatalyst for sacrificial donor assisted hydrogen generation under visible-NIR light irradiation. ACS Sustain Chem Eng 4:2323–2332CrossRefGoogle Scholar
  30. 30.
    Ding C, Song K, Meng H, Zhang B, Zhao Z, Chang H, Wei W (2018) Amplified photoelectrochemical immunoassay for the tumor marker carbohydrate antigen 724 based on dye sensitization of the semiconductor composite C3N4-MoS2. Microchim Acta 185:530CrossRefGoogle Scholar
  31. 31.
    Wang Y, Chen L, Liang M, Xu H, Tang S, Yang H, Song H (2017) Sensitive fluorescence immunoassay of alpha-fetoprotein through copper ions modulated growth of quantum dots in-situ. Sensors Actuators B Chem 247:408–413CrossRefGoogle Scholar
  32. 32.
    Li Y, Zhang N, Zhao W, Jiang D, Xu J, Chen H (2017) Polymer dots for photoelectrochemical bioanalysis. Anal Chem 89:4945–4950CrossRefGoogle Scholar
  33. 33.
    Li F, Liu Y, Zhuang M, Zhang H, Liu X, Cui H (2014) Biothiols as chelators for preparation of N-(aminobutyl)-N-(ethylisoluminol)/Cu2+ complexes bifunctionalized gold nanoparticles and sensitive sensing of pyrophosphate ion. ACS Appl Mater Interfaces 6:18104–18111CrossRefGoogle Scholar
  34. 34.
    Lv S, Li Y, Zhang K, Lin Z, Tang D (2017) Carbon dots/g-C3N4 nanoheterostructures-based signal-generation tags for photoelectrochemical immunoassay of cancer biomarkers coupling with copper nanoclusters. ACS Appl Mater Interfaces 9:38336–38343CrossRefGoogle Scholar
  35. 35.
    Chen Y, Guo X, Liu X, Zhang L (2019) Paper-based fluorometric immunodevice with quantum-dot labeled antibodies for simultaneous detection of carcinoembryonic antigen and prostate specific antigen. Microchim Acta 186:112CrossRefGoogle Scholar
  36. 36.
    Zhou C, Zi Q, Wang J, Zhao W, Cao Q (2019) Determination of alkaline phosphatase activity and of carcinoembryonic antigen by using a multicolor liquid crystal biosensor based on the controlled growth of silver nanoparticles. Microchim Acta 186:25CrossRefGoogle Scholar
  37. 37.
    Qin Z, Xu W, Chen S, Chen J, Qiu J, Li C (2018) Electrochemical immunoassay for the carcinoembryonic antigen based on the use of a glassy carbon electrode modified with an octahedral Cu2O-gold nanocomposite and staphylococcal protein for signal amplification. Microchim Acta 185:266CrossRefGoogle Scholar
  38. 38.
    Liu L, Zhao G, Li Y, Li X, Dong X, Wei Q, Cao W (2018) A voltammetric immunoassay for the carcinoembryonic antigen using a self-assembled magnetic nanocomposite. Microchim Acta 185:387CrossRefGoogle Scholar
  39. 39.
    Yang W, Zhou X, Zhao J, Xu W (2018) A cascade amplification strategy of catalytic hairpin assembly and hybridization chain reaction for the sensitive fluorescent assay of the model protein carcinoembryonic antigen. Microchim Acta 185:100CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Biomedical EngineeringTaiyuan University of TechnologyTaiyuanChina
  2. 2.Department of Nuclear MedicineFirst hospital of Shanxi Medical UniversityTaiyuanChina

Personalised recommendations