Advertisement

Microchimica Acta

, 186:605 | Cite as

Determination of folic acid via its quenching effect on the fluorescence of MoS2 quantum dots

  • Yage PengEmail author
  • Wenfei Dong
  • Le Wan
  • Xiaosai Quan
Original Paper
  • 178 Downloads

Abstract

Molybdenum disulfide quantum dots (MoS2 QDs) are used in a fluorometric method for the determination of folic acid (FA) based on fluorescence quenching. The MoS2 QDs synthesized by a hydrothermal method possess bright blue fluorescence (with excitation/emission maxima of 325/415 nm), quantum yield of 3.7%, and excellent storage stability in solution (30 days in the refrigerator). Their fluorescence is quenched by FA, and intensity decreases linearly in the 0.1 to 125 μM FA concentration range. The detection limit is 0.1 μM (at S/N = 3), and the relative standard deviation (for n = 5) is 2.8% for 25 μM concentrations of FA. Studies on the quenching mechanism suggest that the effect is due to static quenching. The FA in commercial FA tablets was successfully determined.

Graphical abstract

Schematic representation of the hydrothermal method for the preparation of molybdenum disulfide quantum dots (MoS2 QDs) with about 2.7 ± 0.5 nm diameter using Na2MoO4 and L-cysteine as Mo and S sources, and the fluorescence method for the determination of folic acid (FA) based on fluorescence quenching of MoS2 QDs.

Keywords

MoS2 QDs Fluorescence analysis Quenching mechanism Folic acid 

Notes

Acknowledgements

This work was supported by the Scientific Research Projects of Ningxia Colleges and Universities (NGY2017043), the Discipline Project of Ningxia (No. NXYLXK2017A04), and the National Natural Science Foundation of China (21765017).

Author contributions

Yage Peng devised the experiments. Wenfei Dong performed the experiments. Wenfei Dong and Le Wan discussed to prepare MoS2 QDs. Wenfei Dong and Xiaosai Quan performed the HPLC experiment and the analysis of the HPLC data. Yage Peng and Wenfei Dong wrote the manuscript. All authors participated in discussions of the results.

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3705_MOESM1_ESM.doc (3.9 mb)
ESM 1 (DOC 3990 kb)

References

  1. 1.
    Zhang JR, Wang ZL, Qu F, Luo HQ, Li NB (2014) Polyethylenimine-capped silver nanoclusters as a fluorescence probe for highly sensitive detection of folic acid through a two-step electron-transfer process. J Agric Food Chem 62:6592–6599CrossRefGoogle Scholar
  2. 2.
    Lermo A, Fabiano S, Hernández S, Galve R, Marco M-P, Alegret S, Pividori MI (2009) Immunoassay for folic acid detection in vitamin-fortified milk based on electrochemical magneto sensors. Biosens Bioelectron 24:2057–2063CrossRefGoogle Scholar
  3. 3.
    Chakravarty S, Dutta P, Kalita S, Sen SN (2016) PVA-based nanobiosensor for ultrasensitive detection of folic acid by fluorescence quenching. Sensors Actuators B Chem 232:243–250CrossRefGoogle Scholar
  4. 4.
    Zhu Z, Wu H, Wu S, Huang Z, Zhu Y, Xi L (2013) Determination of methotrexate and folic acid by ion chromatography with electrochemical detection on a functionalized multi-wall carbon nanotube modified electrode. J Chromatogr A 1283:62–67CrossRefGoogle Scholar
  5. 5.
    Stover PJ (2004) Physiology of folate and vitamin B 12 in health and disease. Nutr Rev 62:S3–S12CrossRefGoogle Scholar
  6. 6.
    Wang YB, Yang M, Ren YK, Fan J (2018) Cu-Mn codoped ZnS quantum dots-based ratiometric fluorescent sensor for folic acid. Anal Chim Acta 1040:136–142CrossRefGoogle Scholar
  7. 7.
    Wang FL, Cao MY, Wang NN, Muhammad N, Wu SC, Zhu Y (2018) Simple coupled ultrahigh performance liquid chromatography and ion chromatography technique for simultaneous determination of folic acid and inorganic anions in folic acid tablets. Food Chem 239:62–67CrossRefGoogle Scholar
  8. 8.
    Nelson BC, Sharpless KE, Sander LC (2006) Quantitative determination of folic acid in multivitamin/multielement tablets using liquid chromatography/tandem mass spectrometry. J Chromatogr A 1135:203–211CrossRefGoogle Scholar
  9. 9.
    Li XG, Wu XM, Zhang F, Zhao B, Li Y (2019) Label-free detection of folic acid using a sensitive fluorescent probe based on ovalbumin stabilized copper nanoclusters. Talanta 195:372–380CrossRefGoogle Scholar
  10. 10.
    Chekin F, Teodorescu F, Coffinier Y, Pan GH, Barras A, Boukherroub R, Szunerits S (2016) MoS2/reduced graphene oxide as active hybrid material for the electrochemical detection of folic acid in human serum. Biosens Bioelectron 85:807–813CrossRefGoogle Scholar
  11. 11.
    Han SQ, Chen XX (2019) Copper nanoclusters-enhanced chemiluminescence for folic acid and nitrite detection. Spectrochim Acta A 210:315–320CrossRefGoogle Scholar
  12. 12.
    Liu SY, Hu JJ, Su XG (2012) Detection of ascorbic acid and folic acid based on water-soluble CuInS2 quantum dots. Analyst 137:4598–4604CrossRefGoogle Scholar
  13. 13.
    Wang M, Jiao Y, Cheng CS, Hua JH, Yang YL (2017) Nitrogen-doped carbon quantum dots as a fluorescence probe combined with magnetic solid-phase extraction purification for analysis of folic acid in human serum. Anal Bioanal Chem 409:7063–7075CrossRefGoogle Scholar
  14. 14.
    Kundu S, Maiti S, Das TK, Ghosh D, Roy CN, Saha A (2017) Exploiting the biomimetic and luminescence properties of multivalent dendrimer-semiconductor nanohybrid materials in the ultra-low level determination of folic acid. Analyst 142:2491–2499CrossRefGoogle Scholar
  15. 15.
    Chhowalla M, Shin HS, Go E, Li LJ, Loh KP, Zhang H (2013) The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem 5:263–275CrossRefGoogle Scholar
  16. 16.
    Dai WH, Dong HF, Fugetsu BS, Cao Y, Lu HT, Ma XL, Zhang XJ (2015) Tunable fabrication of molybdenum disulfide quantum dots for intracellular microRNA detection and multiphoton bioimaging. Small 11:4158–4164CrossRefGoogle Scholar
  17. 17.
    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A (2011) Single-layer MoS2 transistors. Nat Nanotechnol 6:147–150CrossRefGoogle Scholar
  18. 18.
    Ma CB, Zhu ZT, Wang HX, Huang X, Zhang X, Qi X, Zhang HL, Zhu Y, Deng X, Peng Y, Han Y, Zhang H (2015) A general solid-state synthesis of chemically-doped fluorescent graphene quantum dots for bioimaging and optoelectronic applications. Nanoscale 7:10162–10169CrossRefGoogle Scholar
  19. 19.
    Yukawa H, Baba Y (2017) In vivo fluorescence imaging and the diagnosis of stem cells using quantum dots for regenerative medicine. Anal Chem 89:2671–2681CrossRefGoogle Scholar
  20. 20.
    Cao HY, Wang HB, Huang Y, Sun YF, Shi S, Tang MJ (2017) Quantification of gold (III) in solution and with a test stripe via the quenching of the fluorescence of molybdenum disulfide quantum dots. Microchim Acta 184:91–100CrossRefGoogle Scholar
  21. 21.
    Wang Y, Ni YN (2014) Molybdenum disulfide quantum dots as a photoluminescence sensing platform for 2,4,6-trinitrophenol detection. Anal Chem 86:7463–7470CrossRefGoogle Scholar
  22. 22.
    Gu W, Yan YH, Zhang CL, Ding CP, Xian YZ (2016) One-step synthesis of water-soluble MoS2 quantum dots via a hydrothermal method as a fluorescent probe for hyaluronidase detection. ACS Appl Mater Interfaces 8:11272–11279CrossRefGoogle Scholar
  23. 23.
    Liu XN, Zhang WT, Huang LJ, Hu N, Liu W, Liu YN, Li SH, Yang CY, Suo YR, Wang JL (2018) Fluorometric determination of dopamine by using molybdenum disulfide quantum dots. Microchim Acta 185:234CrossRefGoogle Scholar
  24. 24.
    Xiang DS, Zeng GP, Zhai K, Lia L, He ZK (2011) Determination of melamine in milk powder based on the fluorescence enhancement of au nanoparticles. Analyst 136:2837–2844CrossRefGoogle Scholar
  25. 25.
    Zhang WC, Li X, Xu XC, He YF, Qiu FX, Pan JM, Niu XH (2019) Pd nanoparticle-decorated graphitic C3N4 nanosheets with bifunctional peroxidase mimicking and ON–OFF fluorescence enable naked-eye and fluorescent dual-readout sensing of glucose. J Mater Chem B 7:233–239CrossRefGoogle Scholar
  26. 26.
    Tsay JM, Pflughoefft M, Bentolila LA, Weiss S (2004) Hybrid approach to the synthesis of highly luminescent CdTe/ZnS and CdHgTe/ZnS nanocrystals. J Am Chem Soc 126:1926–1927CrossRefGoogle Scholar
  27. 27.
    Blackman B, Battaglia D, Peng XG (2008) Bright and water-soluble near IR-emitting CdSe/CdTe/ZnSe type-II/type-I nanocrystals, tuning the efficiency and stability by growth. Chem Mater 20:4847–4853CrossRefGoogle Scholar
  28. 28.
    Bujňáková Z, Baláž M, Dutková E, Baláž P, Kello M, Mojžišová G, Mojžiš J, Vilková M, Imrich J, Psotka M (2017) Mechanochemical approach for the capping of mixed core CdS/ZnS nanocrystals: elimination of cadmium toxicity. J Colloid Interface Sci 486:97–111CrossRefGoogle Scholar
  29. 29.
    Chandra S, Patra P, Pathan SH, Roy S, Mitra S, Layek A, Bhar R, Pramanik P, Goswami A (2013) Luminescent S-doped carbon dots: an emergent architecture for multimodal applications. J Mater Chem B 1:2375–2382CrossRefGoogle Scholar
  30. 30.
    Xu Q, Liu Y, Su R, Cai L, Li B, Zhang Y, Zhang L, Wang Y, Wang Y, Li N, Gong X, Gu Z, Chen Y, Tan Y, Dong C, Sreeprasad TS (2016) Highly fluorescent Zn-doped carbon dots as Fenton reaction-based bio-sensors: an integrative experimental-theoretical consideration. Nanoscale 8:17919–17927CrossRefGoogle Scholar
  31. 31.
    Zhao M, Chen AY, Huang D, Chai YQ, Zhuo Y, Yuan R (2017) MoS2 quantum dots as new electrochemiluminescence emitters for ultrasensitive bioanalysis of lipopolysaccharide. Anal Chem 89:8335–8342CrossRefGoogle Scholar
  32. 32.
    Lakowicz JR (2006) Principles of fluorescence spectroscopy. 3rd ed. Springer, p 282Google Scholar
  33. 33.
    Hassanzadeh R, Lotfi A, Bagheri N, Hassanzadeh J (2016) Ultrasensitive and rapid determination of folic acid using Ag nanoparticles enhanced 1, 10-phenantroline-terbium (III) sensitized fluorescence. J Fluoresc 26:1875–1883CrossRefGoogle Scholar
  34. 34.
    Geszke-Moritz M, Clavier G, Lulek J, Schneider R (2012) Copper-or manganese-doped ZnS quantum dots as fluorescent probes for detecting folic acid in aqueous media. J Lumin 132:987–991CrossRefGoogle Scholar
  35. 35.
    Liu PF, Liu D, Liu YH, Li L (2016) ANTS-anchored Zn-Al-CO3-LDH particles as fluorescent probe for sensing of folic acid. J Solid State Chem 241:164–172CrossRefGoogle Scholar
  36. 36.
    Li XW, Chen LG (2016) Fluorescence probe based on an amino-functionalized fluorescent magnetic nanocomposite for detection of folic acid in serum. ACS Appl Mater Interfaces 8:31832–31840CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical EngineeringNingxia UniversityYinchuanPeople’s Republic of China

Personalised recommendations