Advertisement

Microchimica Acta

, 186:598 | Cite as

An electrochemiluminescence immunosensor for myoglobin using an indium tin oxide glass electrode modified with gold nanoparticles and platinum nanowires

  • Bin Zou
  • Hongying ChengEmail author
  • Yifeng TuEmail author
Original Paper
  • 99 Downloads

Abstract

An electrochemiluminescence (ECL) immunosensor was fabricated to detect myoglobin in human serum. Specifically, gold nanoparticles and platinum nanowires were deposited onto indium tin oxide-coated glass with 3-aminopropyl-trimethoxysilane as the linker to fabricate a basal electrode. The gold nanoparticles had a diameter of approximately 5 nm, and the platinum nanowires had diameters of approximately 2–3 nm and lengths on the order of dozens of nanometers. The nanomaterials effectively enhanced the ECL of luminol and enabled it to emit strong light, even in a weakly basic environment. A myoglobin antibody was then covalently immobilized on the electrode. Upon formation of the immunocomplex, the intensity of the luminol ECL was reduced. Under the optimized experimental conditions, the intensity of the ECL linearly decreased with the logarithm of the myoglobin concentration over the range of 3.0 ng·mL−1 to 0.32 μg·mL−1, and the detection limit was 0.11 ng·mL−1.

Graphical abstract

Schematic of an electrochemiluminescent immunosensor for myoglobin using gold nanoparticles and platinum nanowires as supporting matrix on indium tin oxide coated glass. It can detect myoglobin in human serum with a detection limit of 0.11 ng·mL−1 and high selectivity.

Keywords

Electrochemiluminescence Immunosensor Nanocomposite Inhibition Myoglobin Acute myocardial infarction 

Notes

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (21675115, 21375091).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3703_MOESM1_ESM.docx (225 kb)
ESM 1 (DOCX 224 kb)

References

  1. 1.
    Kim DH, Seo SM, Cho HM, Hong SJ, Lim DS, Paek SH (2014) Continuous immunosensing of myoglobin in human serum as potential companion diagnostics technique. Biosens Bioelectron 62:234–241.  https://doi.org/10.1016/j.bios.2014.06.039 CrossRefPubMedGoogle Scholar
  2. 2.
    Aldous SJ (2013) Cardiac biomarkers in acute myocardial infarction. Int J Cardiol 164(3):282–294.  https://doi.org/10.1016/j.ijcard.2012.01.081 CrossRefPubMedGoogle Scholar
  3. 3.
    Masson JF, Battaglia TM, Khairallah P, Beaudoin S, Booksh KS (2007) Quantitative measurement of cardiac markers in undiluted serum. Anal Chem 79(2):612–619.  https://doi.org/10.1021/ac061089f CrossRefPubMedGoogle Scholar
  4. 4.
    Gnedenko OV, Mezentsev YV, Molnar AA, Lisitsa AV, Ivanov AS, Archakov AI (2013) Highly sensitive detection of human cardiac myoglobin using a reverse sandwich immunoassay with a gold nanoparticle-enhanced surface plasmon resonance biosensor. Anal Chim Acta 759:105–109.  https://doi.org/10.1016/j.aca.2012.10.053 CrossRefPubMedGoogle Scholar
  5. 5.
    Giaretta N, Di Giuseppe AM, Lippert M, Parente A, Di Maro A (2013) Myoglobin as marker in meat adulteration: a UPLC method for determining the presence of pork meat in raw beef burger. Food Chem 141(3):1814–1820.  https://doi.org/10.1016/j.foodchem.2013.04.124 CrossRefPubMedGoogle Scholar
  6. 6.
    Darain F, Yager P, Gan KL, Tjin SC (2009) On-chip detection of myoglobin based on fluorescence. Biosens Bioelectron 24(6):1744–1750.  https://doi.org/10.1016/j.bios.2008.09.004 CrossRefPubMedGoogle Scholar
  7. 7.
    Norregaardhansen K, Heinsorensen O (1982) Significance of serum myoglobin in neuromuscular diseases and in carrier detection of Duchenne muscular-dystrophy. Acta Neurol Scand 66(2):259–266.  https://doi.org/10.1111/j.1600-0404.1982.tb04523.x CrossRefGoogle Scholar
  8. 8.
    Nikulina VA, Kizim EA, Massino YS, Segal OL, Smirnova MB, Avilov VV, Saprygin DB, Smotrov SP, Kolyaskina GI, Dmitriev AD (1999) Triple-site antigen capture ELISA for human myoglobin can be more effective than double-site assay. Biochemistry-Moscow 64(10):1138–1145PubMedGoogle Scholar
  9. 9.
    Stoyanov AV, Rohlfing CL, Connolly S, Roberts ML, Nauser CL, Little RR (2011) Use of cation exchange chromatography for human C-peptide isotope dilution - mass spectrometric assay. J Chromatogr A 1218(51):9244–9249.  https://doi.org/10.1016/j.chroma.2011.10.080 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Kang JH, Korecka M, Toledo JB, Trojanowski JQ, Shaw LM (2013) Clinical utility and analytical challenges in measurement of cerebrospinal fluid amyloid-beta(1-42) and tau proteins as Alzheimer disease biomarkers. Clin Chem 59(6):903–916.  https://doi.org/10.1373/clinchem.2013.202937 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Zhang WB, Liu LR, Huo YH, Yang YH, Wang YP (2014) Hypoxia-pretreated human MSCs attenuate acute kidney injury through enhanced angiogenic and antioxidative capacities. Biomed Res Int 2014(462472):1–10.  https://doi.org/10.1155/2014/462472 CrossRefGoogle Scholar
  12. 12.
    Zhang HF, Ma LN, Li PL, Zheng JB (2016) A novel electrochemical immunosensor based on nonenzymatic Ag@Au-Fe3O4 nanoelectrocatalyst for protein biomarker detection. Biosens Bioelectron 85:343–350.  https://doi.org/10.1016/j.bios.2016.04.100 CrossRefPubMedGoogle Scholar
  13. 13.
    Rong Z, Wang Q, Sun NX, Jia XF, Wang KL, Xiao R, Wang SQ (2019) Smartphone-based fluorescent lateral flow immunoassay platform for highly sensitive point-of-care detection of Zika virus nonstructural protein 1. Anal Chim Acta 1055:140–147.  https://doi.org/10.1016/j.aca.2018.12.043 CrossRefPubMedGoogle Scholar
  14. 14.
    Sun CQ, Zhang X, Tang MH, Liu L, Shi Y, Gao CH, Liao B, Zheng HZ (2019) New optical method for the determination of beta-galactosidase and alpha-fetoprotein based on oxidase-like activity of fluorescein. Talanta 194:164–170.  https://doi.org/10.1016/j.talanta.2018.08.075 CrossRefPubMedGoogle Scholar
  15. 15.
    Shen GY, Lu JL (2010) Piezoelectric immunosensor based on gold nanoparticles capped with mixed self-assembled monolayer for detection of carcinoembryonic antigen. Thin Solid Films 518(17):5010–5013.  https://doi.org/10.1016/j.tsf.2010.03.077 CrossRefGoogle Scholar
  16. 16.
    Muzyka K (2014) Current trends in the development of the electrochemiluminescent immunosensors. Biosens Bioelectron 54:393–407.  https://doi.org/10.1016/j.bios.2013.11.011 CrossRefPubMedGoogle Scholar
  17. 17.
    Ma XX, Fang C, Yan JL, Zhao Q, Tu YF (2018) A label-free electrochemiluminescent immunosensor for glutamate decarboxylase antibody detection on AuNPs supporting interface. Talanta 186:206–214.  https://doi.org/10.1016/j.talanta.2018.04.052 CrossRefPubMedGoogle Scholar
  18. 18.
    Liu T, Chen X, Hong CY, Xu XP, Yang HH (2013) Label-free and ultrasensitive electrochemiluminescence detection of microRNA based on long-range self-assembled DNA nanostructures. Microchim Acta 181(7–8):731–736.  https://doi.org/10.1007/s00604-013-1113-5 CrossRefGoogle Scholar
  19. 19.
    Zhang SP, Zang LL, Zhang XZ, Dai H, Xu GF, Zhang QR, Yang CP, Lin YY (2016) Signal-on electrochemiluminescent immunosensor based on poly(amidoamine) dendrimer functionalized carbon nanodots amplification for ultrasensitive detection of α-fetoprotein. Electrochim Acta 196:67–74.  https://doi.org/10.1016/j.electacta.2016.02.162 CrossRefGoogle Scholar
  20. 20.
    Liu YT, Wang HJ, Xiong CY, Yuan YL, Chai YQ, Yuan R (2016) A sensitive electrochemiluminescence immunosensor based on luminophore capped Pd@au core-shell nanoparticles as signal tracers and ferrocenyl compounds as signal enhancers. Biosens Bioelectron 81:334–340.  https://doi.org/10.1016/j.bios.2016.03.014 CrossRefPubMedGoogle Scholar
  21. 21.
    Ahirwal GK, Mitra CK (2010) Gold nanoparticles based sandwich electrochemical immunosensor. Biosens Bioelectron 25(9):2016–2020.  https://doi.org/10.1016/j.bios.2010.01.029 CrossRefPubMedGoogle Scholar
  22. 22.
    Hong J, Ming L, Tu YF (2014) Intensification of the electrochemiluminescence of luminol on hollow TiO(2) nanoshell-modified indium tin oxide electrodes. Talanta 128:242–247.  https://doi.org/10.1016/j.talanta.2014.05.003 CrossRefPubMedGoogle Scholar
  23. 23.
    Comotti M, Della Pina C, Matarrese R, Rossi M (2004) The catalytic activity of "naked" gold particles. Angew Chem Int Ed 43(43):5812–5815.  https://doi.org/10.1002/anie.200460446 CrossRefGoogle Scholar
  24. 24.
    Koenigsmann C, Zhou WP, Adzic RR, Sutter E, Wong SS (2010) Size-dependent enhancement of electrocatalytic performance in relatively defect-free, processed ultrathin platinum nanowires. Nano Lett 10(8):2806–2811.  https://doi.org/10.1021/nl100718k CrossRefPubMedGoogle Scholar
  25. 25.
    Dai Y, Chen SL (2015) Oxygen reduction electrocatalyst of Pt on au nanoparticles through spontaneous deposition. ACS Appl Mater Interfaces 7(1):823–829.  https://doi.org/10.1021/am5073029 CrossRefPubMedGoogle Scholar
  26. 26.
    Park IS, Lee KS, Choi JH, Park HY, Sung YE (2007) Surface structure of Pt-modified au nanoparticles and electrocatalytic activity in formic acid electro-oxidation. J Physical Chemistry C 111(51):19126–19133.  https://doi.org/10.1021/jp0739566 CrossRefGoogle Scholar
  27. 27.
    Raymundo-Pereira PA, Shimizu FM, Coelho D, Piazzeta MHO, Gobbi AL, Machado SAS, Oliveira ON (2016) A nanostructured bifunctional platform for sensing of glucose biomarker in artificial saliva: synergy in hybrid Pt/au surfaces. Biosens Bioelectron 86:369–376.  https://doi.org/10.1016/j.bios.2016.06.053 CrossRefPubMedGoogle Scholar
  28. 28.
    Song Y, Ma YT, Wang YA, Di JW, Tu YF (2010) Electrochemical deposition of gold-platinum alloy nanoparticles on an indium tin oxide electrode and their electrocatalytic applications. Electrochim Acta 55(17):4909–4914.  https://doi.org/10.1016/j.electacta.2010.03.089 CrossRefGoogle Scholar
  29. 29.
    Zhang L, Guo WY, Chu HH, Tu YF (2008) Studies on sensitization for electrochemiluminescence of luminol with platinum-gold bimetallic nanoparticles modified electrode. Spectrosc Spectr Anal 28(12):2785–2788.  https://doi.org/10.3964/j.issn.1000-0593(2008)12-2785-04 CrossRefGoogle Scholar
  30. 30.
    Tuteja SK, Chen R, Kukkar M, Song CK, Mutreja R, Singh S, Paul AK, Lee H, Kim KH, Deep A, Suri CR (2016) A label-free electrochemical immunosensor for the detection of cardiac marker using graphene quantum dots (GQDs). Biosens Bioelectron 86:548–556.  https://doi.org/10.1016/j.bios.2016.07.052 CrossRefPubMedGoogle Scholar
  31. 31.
    Kumar V, Shorie M, Ganguli AK, Sabherwal P (2015) Graphene-CNT nanohybrid aptasensor for label free detection of cardiac biomarker myoglobin. Biosens Bioelectron 72:56–60.  https://doi.org/10.1016/j.bios.2015.04.089 CrossRefPubMedGoogle Scholar
  32. 32.
    Zhang GJ, Liu ZG, Wang L, Guo YJ (2016) Electrochemical aptasensor for myoglobin-specific recognition based on porphyrin functionalized graphene-conjugated gold nanocomposites. Sensors (Basel) 16(11).  https://doi.org/10.3390/s16111803
  33. 33.
    Yang XH, Wang Q, Yang XH, Liu F, Wang KM (2015) Visual detection of myoglobin via G-quadruplex DNAzyme functionalized gold nanoparticles-based colorimetric biosensor. Sensors Actuators B 212:440–445.  https://doi.org/10.1016/j.snb.2015.02.040 CrossRefGoogle Scholar
  34. 34.
    Pur MRK, Hosseini M, Faridbod F, Ganjali MR (2017) Highly sensitive label-free electrochemiluminescence aptasensor for early detection of myoglobin, a biomarker for myocardial infarction. Microchim Acta 184(9):3529–3537.  https://doi.org/10.1007/s00604-017-2385-y CrossRefGoogle Scholar
  35. 35.
    Liu XF, Zhang H, Qin SY, Wang Q, Yang XH, Wang KM (2019) Optical fiber amplifier for quantitative and sensitive point-of-care testing of myoglobin and miRNA-141. Biosens Bioelectron 129:87–92.  https://doi.org/10.1016/j.bios.2018.12.056 CrossRefPubMedGoogle Scholar
  36. 36.
    Kavsak PA, MacRae AR, Newman AM, Lustig V, Palomaki GE, Ko DT, Tu JV, Jaffe AS (2007) Effects of contemporary troponin assay sensitivity on the utility of the early markers myoglobin and CKMB isoforms in evaluating patients with possible acute myocardial infarction. Clin Chim Acta 380(1–2):213–216.  https://doi.org/10.1016/j.cca.2007.01.001 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Chemistry, Chemical Engineering and Material ScienceSoochow UniversitySuzhouPeople’s Republic of China
  2. 2.School of Chemistry, Biology and Materials EngineeringSuzhou University of Science and TechnologySuzhouPeople’s Republic of China

Personalised recommendations