Advertisement

Microchimica Acta

, 186:603 | Cite as

Flexible and adhesive tape decorated with silver nanorods for in-situ analysis of pesticides residues and colorants

  • Jiaolai Jiang
  • Sumeng Zou
  • Yingru Li
  • Fengtong Zhao
  • Jun Chen
  • Shaofei Wang
  • Haoxi Wu
  • Jingsong Xu
  • Mingfu Chu
  • Junsheng LiaoEmail author
  • Zhengjun ZhangEmail author
Original Paper
  • 137 Downloads

Abstract

A flexible adhesive tape decorated with SERS-active silver nanorods (AgNRs) in the form of an array nanostructure is described. The tape was constructed by transferring the AgNRs nanostructures from silicon to the transparent tape by a “paste & peel off” procedure. The transparent, sticky, and flexible properties of commercial tapes allow almost any SERS-inactive irregular surface to be detected in-situ by pasting the SERS tape onto the position to be analyzed. Three examples for an analytical application are presented, viz. determination of (a) tetramethylthiuram disulfide and thiabendazole (two pesticides), (b) colorants in the gel of a writing pen, and (c) the fluorophore Rhodamine B. The tetramethylthiuram disulfide on apple surface was rapidly detected with a LOD of 28.8 ng·cm−2. The AgNRs effectively quenched the fluorescence of the matrix and fluorophores, this enabling the colorants and Rhodamine B to be identified. The results demonstrated that the SERS tape can be used for versatile in-situ detection. Conceivably, it may find applications in food analysis, non-invasive identification, environmental monitoring, and in other areas of daily life.

Graphic abstract

A flexible and adhesive SERS active tape decorated with silver nanorods (AgNRs) arrays was constructed through a “paste & peel off” method. It can be used as a versatile in situ analysis platform for various applications.

Keywords

SERS Noninvasive analysis “Paste & Peel off” process Tetramethylthiuram disulfide Thiabendazole Oblique angle deposition Detection Fluorescence quenching 

Notes

Acknowledgements

This study was financially supported by the China Academy of Engineering Physics for the sponsored research (TCSQ2016203), the Basic Science Center Project of NSFC (no. 51788104), the Radiochemical Discipline 909 Funds by the China Academy of Engineering Physics (no. XK909-2), the Natural Science Foundation of China (no. 21501157, 51531006, and 51572148), and the key project of the Ministry of Science and Technology of China (grant no. 2016YFE0104000).

Compliance with ethical standards

The authors declare that they have no competing interests.

Supplementary material

604_2019_3695_MOESM1_ESM.docx (1.5 mb)
ESM 1 (DOCX 1539 kb)

References

  1. 1.
    Wilson AJ, Willets KA (2016) Unforeseen distance-dependent SERS spectroelectrochemistry from surface-tethered Nile blue: the role of molecular orientation. Analyst 141(17):5144–5151CrossRefGoogle Scholar
  2. 2.
    Xie W, Walkenfort B, Schlücker S (2013) Label-free SERS monitoring of chemical reactions catalyzed by small gold nanoparticles using 3D plasmonic superstructures. J Am Chem Soc 135(5):1657–1660CrossRefGoogle Scholar
  3. 3.
    Li D-W, Zhai W-L, Li Y-T, Long Y-T (2014) Recent progress in surface enhanced Raman spectroscopy for the detection of environmental pollutants. Microchim Acta 181(1–2):23–43CrossRefGoogle Scholar
  4. 4.
    Pan Y, Guo X, Zhu J, Wang X, Zhang H, Kang Y, Wu T, Du Y (2015) A new SERS substrate based on silver nanoparticle functionalized polymethacrylate monoliths in a capillary, and it application to the trace determination of pesticides. Microchim Acta 182(9–10):1775–1782CrossRefGoogle Scholar
  5. 5.
    Li D, Duan H, Wang Y, Zhang Q, Cao H, Deng W, Li D (2018) On-site preconcentration of pesticide residues in a drop of seawater by using electrokinetic trapping, and their determination by surface-enhanced Raman scattering. Microchim Acta 185(1):10CrossRefGoogle Scholar
  6. 6.
    Qu L-L, Geng Y-Y, Bao Z-N, Riaz S, Li H (2016) Silver nanoparticles on cotton swabs for improved surface-enhanced Raman scattering, and its application to the detection of carbaryl. Microchim Acta 183(4):1307–1313CrossRefGoogle Scholar
  7. 7.
    Braz A, López-López M, Montalvo G, Ruiz CG (2015) Forensic discrimination of inkjet-printed lines by Raman spectroscopy and surface-enhanced Raman spectroscopy. Aust J Forensic Sci 47(4):411–420CrossRefGoogle Scholar
  8. 8.
    Schlucker S (2014) Surface-enhanced Raman spectroscopy: concepts and chemical applications. Angew Chem Int Ed Engl 53(19):4756–4795CrossRefGoogle Scholar
  9. 9.
    Panneerselvam R, Liu G-K, Wang Y-H, Liu J-Y, Ding S-Y, Li J-F, Wu D-Y, Tian Z-Q (2018) Surface-enhanced Raman spectroscopy: bottlenecks and future directions. Chem Commun 54(1):10–25CrossRefGoogle Scholar
  10. 10.
    Liu Z, Cheng L, Zhang L, Jing C, Shi X, Yang Z, Long Y, Fang J (2014) Large-area fabrication of highly reproducible surface enhanced Raman substrate via a facile double sided tape-assisted transfer approach using hollow Au–Ag alloy nanourchins. Nanoscale 6(5):2567–2572CrossRefGoogle Scholar
  11. 11.
    Ding S-Y, You E-M, Yi J, Li J-F, Tian Z-Q (2017) Further expanding versatility of surface-enhanced Raman spectroscopy: from non-traditional SERS-active to SERS-inactive substrates and single shell-isolated nanoparticle. Faraday Discuss 205:457–468CrossRefGoogle Scholar
  12. 12.
    Jiang N, Kurouski D, Pozzi EA, Chiang N, Hersam MC, Duyne RPV (2016) Tip-enhanced Raman spectroscopy: from concepts to practical applications. Chem Phys Lett 659:16–24CrossRefGoogle Scholar
  13. 13.
    Li JF, Huang YF, Ding Y, Yang ZL, Li SB, Zhou XS, Fan FR, Zhang W, Zhou ZY, Wu DY, Ren B, Wang ZL, Tian ZQ (2010) Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464(7287):392–395CrossRefGoogle Scholar
  14. 14.
    Kumar S, Goel P, Singh JP (2017) Flexible and robust SERS active substrates for conformal rapid detection of pesticide residues from fruits. Sensors Actuators B Chem 241(31):577–583CrossRefGoogle Scholar
  15. 15.
    Chen J, Huang Y, Kannan P, Zhang L, Lin Z, Zhang J, Chen T, Guo L (2016) Flexible and adhesive surface enhanced Raman scattering active tape for rapid detection of pesticide residues in fruits and vegetables. Anal Chem 88(4):2149–2155CrossRefGoogle Scholar
  16. 16.
    Lee CH, Tian L, Singamaneni S (2010) Paper-based SERS swab for rapid trace detection on real-world surfaces. ACS Appl Mater Interfaces 2(12):3429–3435CrossRefGoogle Scholar
  17. 17.
    Fortuni B, Fujita Y, Ricci M, Inose T, Aubert R, Lu G, Hutchison JA, Hofkens J, Latterini L, Ujii H (2017) A novel method for in situ synthesis of SERS-active gold nanostars on polydimethylsiloxane film. Chem Commun 53(37):5121–5124CrossRefGoogle Scholar
  18. 18.
    Jiang J, Zou S, Ma L, Wang S, Liao J, Zhang Z (2018) Surface-enhanced Raman scattering detection of pesticide residues using transparent adhesive Tapes and coated silver Nanorods. ACS Appl Mater Interfaces 10(10):9129–9135CrossRefGoogle Scholar
  19. 19.
    Ma L, Huang Y, Hou M, Zheng X, Zhang Z (2015) Silver Nanorods wrapped with ultrathin Al2O3 layers exhibiting excellent SERS sensitivity and outstanding SERS stability. Sci Rep 5:12890CrossRefGoogle Scholar
  20. 20.
    Jiang J, Ma L, Chen J, Zhang P, Wu H, Zhang Z, Wang S, Yun W, Li Y, Jia J (2017) SERS detection and characterization of uranyl ion sorption on silver nanorods wrapped with Al2O3 layers. Microchim Acta 184(8):2775–2782CrossRefGoogle Scholar
  21. 21.
    Jiang J, Wang S, Wu H, Zhang J, Li H, Jia J, Wang X, Liao J (2015) Facile and rapid fabrication of large-scale silver nanoparticles arrays with high SERS performance. RSC Adv 5:105820–105824CrossRefGoogle Scholar
  22. 22.
    Reganold JP, Wachter JM (2016) Organic agriculture in the twenty-first century. Nat Plants 2(2):15221CrossRefGoogle Scholar
  23. 23.
    Lee D, Lee S, Seong GH, Choo J, Lee EK, Gweon DG, Lee S (2006) Quantitative analysis of methyl parathion pesticides in a polydimethylsiloxane microfluidic channel using confocal surface-enhanced Raman spectroscopy. Appl Spectrosc 60(4):373–377CrossRefGoogle Scholar
  24. 24.
    Wang J, Kong L, Guo Z, Xu J, Liu J (2010) Synthesis of novel decorated one-dimensional gold nanoparticle and its application in ultrasensitive detection of insecticide. J Mater Chem 20(25):5271–5279CrossRefGoogle Scholar
  25. 25.
    Yang JK, Kang H, Lee H, Jo A, Jeong S, Jeon SJ, Kim HI, Lee HY, Jeong DH, Kim JH (2014) Single-step and rapid growth of silver nanoshells as SERS-active nanostructures for label-free detection of pesticides. ACS Appl Mater Interfaces 6(15):12541–12549CrossRefGoogle Scholar
  26. 26.
    Hoppmann EP, Wei WY, White IM (2013) Highly sensitive and flexible inkjet printed SERS sensors on paper. Methods 63(3):219–224CrossRefGoogle Scholar
  27. 27.
    Alyami A, Quinn AJ, Iacopino D (2019) Flexible and transparent surface enhanced Raman scattering (SERS)-active ag NPs/PDMS composites for in-situ detection of food contaminants. Talanta 201:58–64CrossRefGoogle Scholar
  28. 28.
    Zhang Y, Wang Z, Wu L, Pei Y, Chen P, Cui Y (2014) Rapid simultaneous detection of multi-pesticide residues on apple using SERS technique. Analyst 139(20):5148–5154CrossRefGoogle Scholar
  29. 29.
    Müller C, David L, Chiş V, Pînzaru SC (2014) Detection of thiabendazole applied on citrus fruits and bananas using surface enhanced Raman scattering. Food Chem 145(7):814–820CrossRefGoogle Scholar
  30. 30.
    Kurouski D, Zaleski S, Casadio F, Van Duyne RP, Shah NC (2014) Tip-enhanced Raman spectroscopy (TERS) for in situ identification of indigo and Iron gall ink on paper. J Am Chem Soc 136(24):8677–8684CrossRefGoogle Scholar
  31. 31.
    Bell SEJ, Stewart SP, Ho YC, Craythorne BW, Speers SJ (2013) Comparison of the discriminating power of Raman and surface-enhanced Raman spectroscopy with established techniques for the examination of liquid and gel inks. J Raman Spectrosc 44(4):509–517CrossRefGoogle Scholar
  32. 32.
    Casadio F, Leona M, Lombardi JR, Van Duyne R (2010) Identification of organic colorants in fibers, paints, and glazes by surface enhanced Raman spectroscopy. Acc Chem Res 43(6):782–791CrossRefGoogle Scholar
  33. 33.
    Zrimsek AB, Henry A-I, Van Duyne RP (2013) Single molecule surface-enhanced Raman spectroscopy without Nanogaps. J Phys Chem Lett 4(19):3206–3210CrossRefGoogle Scholar
  34. 34.
    Wei W, Huang Q (2017) Rapid fabrication of silver nanoparticle-coated filter paper as SERS substrate for low-abundance molecules detection. Spectrochim Acta, Part A 179:211–215CrossRefGoogle Scholar
  35. 35.
    Wang D, Wang F, Yang H (2018) Robust, flexible, sticky and high sensitive SERS membrane for rapid detection applications. Sensors Actuators B Chem 274:676–681CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Jiaolai Jiang
    • 1
  • Sumeng Zou
    • 2
  • Yingru Li
    • 1
  • Fengtong Zhao
    • 2
  • Jun Chen
    • 1
  • Shaofei Wang
    • 1
  • Haoxi Wu
    • 1
  • Jingsong Xu
    • 1
  • Mingfu Chu
    • 1
  • Junsheng Liao
    • 1
    Email author
  • Zhengjun Zhang
    • 2
    Email author
  1. 1.Institute of MaterialsChina Academy of Engineering PhysicsMianyangPeople’s Republic of China
  2. 2.Key Laboratory of Advanced Materials (MOE), School of Materials Science and EngineeringTsinghua UniversityBeijingPeople’s Republic of China

Personalised recommendations