Advertisement

Microchimica Acta

, 186:532 | Cite as

Point-of-care amperometric determination of L-dopa using an inkjet-printed carbon nanotube electrode modified with dandelion-like MnO2 microspheres

  • Dalibor M. StankovićEmail author
  • Milica Jović
  • Miloš Ognjanović
  • Andreas Lesch
  • Martin Fabián
  • Hubert H. Girault
  • Bratislav Antić
Original Paper
  • 216 Downloads

Abstract

An electrochemical sensor is described for the determination of L-dopa (levodopa; 3,4-dihydroxyphenylalanine). An inkjet-printed carbon nanotube (IJPCNT) electrode was modified with manganese dioxide microspheres by drop-casting. They coating was characterized by field emission scanning electron microscopy, Fourier-transform infrared spectroscopy and X-ray powder diffraction. The sensor, best operated at a working voltage of 0.3 V, has a linear response in the 0.1 to 10 μM L-dopa concentration range, a 54 nM detection limit, excellent reproducibility, repeatability and selectivity. The amperometric approach was applied to the determination of L-dopa in spiked biological fluids and displayed satisfactory accuracy and precision.

Graphical abstract

Schematic representation of an amperometric method for determination L-dopa. It is based on the use of inkjet-printed carbon nanotube electrode (IJPCNT) modified with manganese dioxide (MnO2).

Keywords

Levodopa Electrochemical sensor Manganese dioxide Cyclic voltammetry Amperometry Point-of-care 

Notes

Acknowledgements

This work was supported by MagBioVin project (FP7-ERAChairs-Pilot Call-2013, Grant agreement: 621375), by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Project No. OI 172030, Project OI172049).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3644_MOESM1_ESM.docx (985 kb)
ESM 1 (DOCX 984 kb)

References

  1. 1.
    Bugamelli F, Marcheselli C, Barba E, Raggi MA (2011) Determination of L-dopa, carbidopa, 3-O-methyldopa and entacapone in human plasma by HPLC-ED. J Pharm Biomed Anal 54:562–567.  https://doi.org/10.1016/j.jpba.2010.09.042 CrossRefPubMedGoogle Scholar
  2. 2.
    Djozan D, Amir-Zehni M (2005) Determination of L-Dopa and L-dopamine in aqueous solutions using in-loop SPME coupled with LC. Chroma 62:127–132.  https://doi.org/10.1365/s10337-005-0587-7 CrossRefGoogle Scholar
  3. 3.
    Stanković DM, Samphao A, Dojcinović B, Kalcher K (2016) Rapid electrochemical method for the determination of L-DOPA in extract from the seeds of Mucuna prurita. Acta Chim Slov:220–226.  https://doi.org/10.17344/acsi.2015.1541
  4. 4.
    Zhao S, Bai W, Wang B, He M (2007) Determination of levodopa by capillary electrophoresis with chemiluminescence detection. Talanta 73:142–146.  https://doi.org/10.1016/j.talanta.2007.03.023 CrossRefPubMedGoogle Scholar
  5. 5.
    Pérez-Ruiz T, Martínez Lozano C, Tomás V, Ruiz E (2007) Flow injection fluorimetric determination of L-dopa and dopamine based on a photochemical inhibition process. Microchim Acta 158:299–305.  https://doi.org/10.1007/s00604-006-0710-y CrossRefGoogle Scholar
  6. 6.
    Jayakumar C, Jeseentharani V, Subba reddy Y, kulandainathan MA, Nagaraj KS, Jeyaraj B (2013) Electrochemical determination of L-dopa in the presence of ascorbic acid by gold nanoparticles functionalized 8- Hydroxyquinoline modified glassy carbon electrode. Anal Bioanal Electrochem 5:193–205Google Scholar
  7. 7.
    Yan X, Pan D, Wang H, Bo X, Guo L (2011) Electrochemical determination of L-dopa at cobalt hexacyanoferrate/large-mesopore carbon composite modified electrode. J Electroanal Chem 663:36–42.  https://doi.org/10.1016/j.jelechem.2011.09.024 CrossRefGoogle Scholar
  8. 8.
    Sanghavi BJ, Wolfbeis OS, Hirsch T, Swami NS (2015) Nanomaterial-based electrochemical sensing of neurological drugs and neurotransmitters. Microchim Acta 182:1–41.  https://doi.org/10.1007/s00604-014-1308-4 CrossRefGoogle Scholar
  9. 9.
    Brunetti B, Valdés-Ramírez G, Litvan I, Wang J (2014) A disposable electrochemical biosensor for l-DOPA determination in undiluted human serum. Electrochem Commun 48:28–31.  https://doi.org/10.1016/j.elecom.2014.08.007 CrossRefGoogle Scholar
  10. 10.
    Hormozi-Nezhad MR, Moslehipour A, Bigdeli A (2017) Simple and rapid detection of l -dopa based on in situ formation of polylevodopa nanoparticles. Sens Actuator B-Chem 243:715–720.  https://doi.org/10.1016/j.snb.2016.12.059 CrossRefGoogle Scholar
  11. 11.
    Kalachar HCB, Basavanna S, Viswanatha R, Naik YA, Raj DA, Sudha PN (2011) Electrochemical determination of L-Dopa in Mucuna pruriens seeds, leaves and commercial siddha product using gold modified pencil graphite electrode. Electroanalysis 23:1107–1115.  https://doi.org/10.1002/elan.201000558 CrossRefGoogle Scholar
  12. 12.
    Kamyabi MA, Rahmanian N (2015) An electrochemical sensing method for the determination of levodopa using a poly(4-methyl-ortho-phenylenediamine)/MWNT modified GC electrode. Anal Methods 7:1339–1348.  https://doi.org/10.1039/C4AY01638F CrossRefGoogle Scholar
  13. 13.
    Shahrokhian S, Asadian E (2009) Electrochemical determination of l-dopa in the presence of ascorbic acid on the surface of the glassy carbon electrode modified by a bilayer of multi-walled carbon nanotube and poly-pyrrole doped with tiron. J Electroanal Chem 636:40–46.  https://doi.org/10.1016/j.jelechem.2009.09.010 CrossRefGoogle Scholar
  14. 14.
    Jović M, Zhu Y, Lesch A, Bondarenko A, Cortés-Salazar F, Gumy F, Girault HH (2017) Inkjet-printed microtiter plates for portable electrochemical immunoassays. J Electroanal Chem 786:69–76.  https://doi.org/10.1016/j.jelechem.2016.12.051 CrossRefGoogle Scholar
  15. 15.
    Jović M, Hidalgo-Acosta JC, Lesch A, Costa Bassetto V, Smirnov E, Cortés-Salazar F, Girault HH (2018) Large-scale layer-by-layer inkjet printing of flexible iridium-oxide based pH sensors. J Electroanal Chem 819:384–390.  https://doi.org/10.1016/j.jelechem.2017.11.032 CrossRefGoogle Scholar
  16. 16.
    Zhu Y, Gasilova N, Jović M, Qiao L, Liu B, Lovey LT, Pick H, Girault HH (2018) Detection of antimicrobial resistance-associated proteins by titanium dioxide-facilitated intact bacteria mass spectrometry. Chem Sci 9:2212–2221.  https://doi.org/10.1039/C7SC04089J CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Zhu Y, Jović M, Lesch A, Tissières Lovey L, Prudent M, Pick H, Girault HH (2018) Immuno-affinity Amperometric detection of bacterial infections. Angew Chem Int Ed 57:14942–14946.  https://doi.org/10.1002/anie.201808666 CrossRefGoogle Scholar
  18. 18.
    Dimitrijević T, Vulić P, Manojlović D, Nikolić AS, Stanković DM (2016) Amperometric ascorbic acid sensor based on doped ferrites nanoparticles modified glassy carbon paste electrode. Anal Biochem 504:20–26.  https://doi.org/10.1016/j.ab.2016.03.020 CrossRefPubMedGoogle Scholar
  19. 19.
    Lakić M, Vukadinović A, Kalcher K, Nikolić AS, Stanković DM (2016) Effect of cobalt doping level of ferrites in enhancing sensitivity of analytical performances of carbon paste electrode for simultaneous determination of catechol and hydroquinone. Talanta 161:668–674.  https://doi.org/10.1016/j.talanta.2016.09.029 CrossRefPubMedGoogle Scholar
  20. 20.
    Stanković DM, Mehmeti E, Zavašnik J, Kalcher K (2016) Determination of nitrite in tap water: a comparative study between cerium, titanium and selenium dioxide doped reduced graphene oxide modified glassy carbon electrodes. Sens. Actuator B-Chem. 236:311–317.  https://doi.org/10.1016/j.snb.2016.06.018 CrossRefGoogle Scholar
  21. 21.
    Stanković DM, Ognjanović M, Martin F, Švorc Ľ, Mariano JFML, Antić B (2017) Design of titanium nitride- and wolfram carbide-doped RGO/GC electrodes for determination of gallic acid. Anal Biochem 539:104–112.  https://doi.org/10.1016/j.ab.2017.10.018 CrossRefPubMedGoogle Scholar
  22. 22.
    Vukojević V, Djurdjić S, Ognjanović M, Antić B, Kalcher K, Mutić J, Stanković DM (2018) RuO2/graphene nanoribbon composite supported on screen printed electrode with enhanced electrocatalytic performances toward ethanol and NADH biosensing. Biosens Bioelectron 117:392–397.  https://doi.org/10.1016/j.bios.2018.06.038 CrossRefPubMedGoogle Scholar
  23. 23.
    Vukojević V, Djurdjić S, Ognjanović M, Fabián M, Samphao A, Kalcher K, Stanković DM (2018) Enzymatic glucose biosensor based on manganese dioxide nanoparticles decorated on graphene nanoribbons. J Electroanal Chem 823:610–616.  https://doi.org/10.1016/j.jelechem.2018.07.013 CrossRefGoogle Scholar
  24. 24.
    Feng L (2016) Electrochemical study of hydrogen peroxide detection on MnO2 micromaterials. Int J Electrochem Sci:5962–5972.  https://doi.org/10.20964/2016.07.42
  25. 25.
    Mehmeti E, Stanković DM, Chaiyo S, Švorc Ľ, Kalcher K (2016) Manganese dioxide-modified carbon paste electrode for voltammetric determination of riboflavin. Mikrochim Acta 183:1619–1624.  https://doi.org/10.1007/s00604-016-1789-4 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Zbiljić J, Guzsvány V, Vajdle O, Prlina B, Agbaba J, Dalmacija B, Kónya Z, Kalcher K (2015) Determination of H2O2 by MnO2 modified screen printed carbon electrode during Fenton and visible light-assisted photo-Fenton based removal of acetamiprid from water. J Electroanal Chem 755:77–86.  https://doi.org/10.1016/j.jelechem.2015.07.027 CrossRefGoogle Scholar
  27. 27.
    Hocevar S?B, Ogorevc B, Schachl K, Kalcher K (2004) Glucose microbiosensor based on MnO2 and glucose oxidase modified carbon Fiber microelectrode. Electroanalysis 16:1711–1716. doi:  https://doi.org/10.1002/elan.200303019 CrossRefGoogle Scholar
  28. 28.
    Wang X, Luo C, Li L, Duan H (2015) Highly selective and sensitive electrochemical sensor for l-cysteine detection based on graphene oxide/multiwalled carbon nanotube/manganese dioxide/gold nanoparticles composite. J Electroanal Chem 757:100–106.  https://doi.org/10.1016/j.jelechem.2015.09.023 CrossRefGoogle Scholar
  29. 29.
    Lesch A, Maye SI, Jovic M, Gumy F, Tacchini P (2016) Girault H (2016) analytical sensing platforms with inkjet printed electrodes. Adv Mat-TechConnect Briefs 3:121–124Google Scholar
  30. 30.
    Jović M, Cortés-Salazar F, Lesch A, Amstutz V, Bi H, Girault HH (2015) Electrochemical detection of free chlorine at inkjet printed silver electrodes. J Electroanal Chem 756:171–178.  https://doi.org/10.1016/j.jelechem.2015.08.024 CrossRefGoogle Scholar
  31. 31.
    Lv H, Ji G, Liang X, Zhang H, Du Y (2015) A novel rod-like MnO2@Fe loading on graphene giving excellent electromagnetic absorption properties. J Mater Chem C 3:5056–5064.  https://doi.org/10.1039/C5TC00525F CrossRefGoogle Scholar
  32. 32.
    Leite FRF, Maroneze CM, Oliveira AB de, dos Santos WTP, Damos FS, Silva Luz RdC (2012) Development of a sensor for L-Dopa based on co(DMG)(2)ClPy/multi-walled carbon nanotubes composite immobilized on basal plane pyrolytic graphite electrode. Bioelectrochemistry 86:22–29. doi:  https://doi.org/10.1016/j.bioelechem.2012.01.001 CrossRefGoogle Scholar
  33. 33.
    Palakollu VN, Thapliyal N, Chiwunze TE, Karpoormath R, Karunanidhi S, Cherukupalli S (2017) Electrochemically reduced graphene oxide/poly-glycine composite modified electrode for sensitive determination of l-dopa. Mater Sci Eng C 77:394–404.  https://doi.org/10.1016/j.msec.2017.03.173 CrossRefGoogle Scholar
  34. 34.
    Nien P-C, Wang J-Y, Chen P-Y, Chen L-C, Ho K-C (2010) Encapsulating benzoquinone and glucose oxidase with a PEDOT film: application to oxygen-independent glucose sensors and glucose/O2 biofuel cells. Bioresour Technol 101:5480–5486.  https://doi.org/10.1016/j.biortech.2010.02.012 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.The “Vinča” Institute of Nuclear SciencesUniversity of BelgradeBelgradeSerbia
  2. 2.Laboratory of Physical and Analytical Electrochemistry (LEPA)EPFL Valais WallisSionSwitzerland
  3. 3.Department of Industrial Chemistry “Toso Montanari”University of BolognaBolognaItaly
  4. 4.Institute of Geotechnics SASKošiceSlovak Republic

Personalised recommendations