Advertisement

Microchimica Acta

, 186:343 | Cite as

A bimetallic (Cu-Co) Prussian Blue analogue loaded with gold nanoparticles for impedimetric aptasensing of ochratoxin a

  • Chenxi Gu
  • Longyu Yang
  • Minghua Wang
  • Nan ZhouEmail author
  • Linghao He
  • Zhihong ZhangEmail author
  • Miao DuEmail author
Original Paper
  • 54 Downloads

Abstract

Bimetallic (Cu-Co) Prussian Blue analogs (PBAs) were coupled to gold nanoparticles to give a nanocomposite of type AuNP@CuCoPBA. It is shown to be a viable material for the impedimetric aptamer-based determination of ochratoxin A (OTA). Basic characterizations revealed that the chemical composition and crystal structure of AuNP@CuCoPBA is similar to that of pristine CuCo PBA. Nevertheless, the nanocube shape of CoCu PBA is converted to small nanoparticles on addition of AuNPs. Compared with CuCoPBA-based aptasensor, the AuNP@CuCoPBA-based assay exhibits excellent electrochemical conductivity, strong aptamer binding interaction, and high G-quadruplex stability. Electrochemical impedance spectroscopy revealed that the assay has limits of detection as low as 5.2 fg mL−1 of OTA, a response in the 50 fg mL−1 to 10 ng mL−1 concentration range, high selectivity, good reproducibility, repeatability, and acceptable applicability. In our perception, it represents a universal and powerful method for aptamer strand immobilization. It may be applied to the determination of various other analytes for which aptamers are available.

Graphical abstract

Schematic presentation of the preparation of a novel bimetallic Cu-Co PBAs coupling with gold nanoparticles (AuNPs) was supplied. The AuNP@CuCoPBA composite was applied for the sensitive detection of ochratoxin A (OTA). The impedimetric aptasensensor based on AuNP@CuCoPBA displays extremely low limits of detection toward OTA (5.2 fg mL−1), along with high selectivity, good reproducibility, high stability, repeatability, and acceptable applicability.

Keywords

Detection of mycotoxins Electrochemical biosensor Metal-organic frameworks Nanocomposites Food safety testing 

Notes

Acknowledgements

This work was supported by Programs for the National Natural Science Foundation of China, China (NSFC: Account Nos. 81601082, 81371363, and U1604127) and Innovative Technology Team of Henan Province, China (CXTD2014042).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3479_MOESM1_ESM.doc (3.6 mb)
ESM 1 (DOC 3705 kb)

References

  1. 1.
    Oršolić N, Jazvinšćak Jembrek M, Terzić S (2017) Honey and quercetin reduce ochratoxin A-induced DNA damage in the liver and the kidney through the modulation of intestinal microflora. Food Agr Immunol 28:812–833CrossRefGoogle Scholar
  2. 2.
    Quintela S, Villarán MC, López De Armentia I, Elejalde E (2013) Ochratoxin a removal in wine: a review. Food Control 30:439–445CrossRefGoogle Scholar
  3. 3.
    Jiang C, Lan L, Yao Y, Zhao F, Ping J (2018) Recent progress in application of nanomaterial-enabled biosensors for ochratoxin a detection. TrAC Trend Anal Chem 102:236–249CrossRefGoogle Scholar
  4. 4.
    Bougrini M, Baraket A, Jamshaid T, Aissari AE, Bausells J, Zabala M, Bari NE, Bouchikhi B, Jaffrezic-Renault N, Abdelhamid E, Zine N (2016) Development of a novel capacitance electrochemical biosensor based on silicon nitride for ochratoxin a detection. Sensor Actuat B-Chem 234:446–452CrossRefGoogle Scholar
  5. 5.
    Zhang Z, Ji H, Song Y, Zhang S, Wang M, Jia C, Tian J, He L, Zhang X, Liu C (2017) Fe(III)-based metal-organic framework-derived core-shell nanostructure: sensitive electrochemical platform for high trace determination of heavy metal ions. Biosens Bioelectron 94:358–364CrossRefGoogle Scholar
  6. 6.
    Sakurai K, Snyder TM, Liu DR (2005) DNA-templated functional group transformations enable sequence-programmed synthesis using small-molecule reagents. J Am Chem Soc 127:1660–1661CrossRefGoogle Scholar
  7. 7.
    Beiranvand ZS, Abbasi AR, Dehdashtian S, Karimi Z, Azadbakht A (2017) Aptamer-based electrochemical biosensor by using au-Pt nanoparticles, carbon nanotubes and acriflavine platform. Anal Biochem 518:35–45CrossRefGoogle Scholar
  8. 8.
    Bi S, Li L, Zhang S (2010) Triggered polycatenated DNA scaffolds for DNA sensors and aptasensors by a combination of rolling circle amplification and DNAzyme amplification. Anal Chem 82:9447–9454CrossRefGoogle Scholar
  9. 9.
    Zakaria MB, Chikyow T (2017) Recent advances in prussian blue and prussian blue analogues: synthesis and thermal treatments. Coordin Chem Rev 352:328–345CrossRefGoogle Scholar
  10. 10.
    Chu Z, Liu Y, Jin W (2017) Recent progress in prussian blue films: methods used to control regular nanostructures for electrochemical biosensing applications. Biosens Bioelectron 96:17–25CrossRefGoogle Scholar
  11. 11.
    Zhao J, Liu J, Tricard S, Wang L, Liang Y, Cao L, Fang J, Shen W (2015) Amperometric detection of hydrazine utilizing synergistic action of prussian blue@silver nanoparticles/graphite felt modified electrode. Electrochim Acta 171:121–127CrossRefGoogle Scholar
  12. 12.
    Sgobbi LF, Razzino CA, Machado SAS (2016) A disposable electrochemical sensor for simultaneous detection of sulfamethoxazole and trimethoprim antibiotics in urine based on multiwalled nanotubes decorated with prussian blue nanocubes modified screen-printed electrode. Electrochim Acta 191:1010–1017CrossRefGoogle Scholar
  13. 13.
    Xu X, Liang H, Ming F, Qi Z, Xie Y, Wang Z (2017) Prussian blue analogues derived penroseite (Ni,co)Se2 nanocages anchored on 3D graphene aerogel for efficient water splitting. ACS Catal 7:6394–6399CrossRefGoogle Scholar
  14. 14.
    Wang M, Yang L, Hu B, Liu J, He L, Jia Q, Song Y, Zhang Z (2018) Bimetallic NiFe oxide structures derived from hollow NiFe Prussian blue nanobox for label-free electrochemical biosensing adenosine triphosphate. Biosens Bioelectron 113:16–24CrossRefGoogle Scholar
  15. 15.
    Xin W, Severino J, De Rosa IM, Yu D, Mckay J, Ye P, Yin X, Yang J, Carlson L, Kodambaka S (2018) One-step synthesis of tunable-size gold nanoplates on graphene multilayers. Nano Lett 18:1875–1881CrossRefGoogle Scholar
  16. 16.
    Delville A (2005) Influence of confinement on the electrostatic interaction between charged colloids: a (N, V, T) Monte Carlo study within hyperspherical geometry. J Phys Chem B 109:8164–8170CrossRefGoogle Scholar
  17. 17.
    Lee B, Park J, Byun J, Kim JH, Kim M (2018) An optical fiber-based LSPR aptasensor for simple and rapid in-situ detection of ochratoxin a. Biosens Bioelectron 102:504–509CrossRefGoogle Scholar
  18. 18.
    Park J, Byun J, Jang H, Hong D, Kim M (2017) A highly sensitive and widely adaptable plasmonic aptasensor using berberine for small-molecule detection. Biosens Bioelectron 97:292–298CrossRefGoogle Scholar
  19. 19.
    Yang Y, Sangeetha P, Chen Y (2009) Au/FeOx-TiO2 catalysts for the preferential oxidation of CO in a H2 stream. Ind Eng Chem Res 48:10402–10407CrossRefGoogle Scholar
  20. 20.
    Xu Z, Hou Y, Sun S (2007) Magnetic Core/Shell Fe3O4/au and Fe3O4/au/ag nanoparticles with tunable plasmonic properties. J Am Chem Soc 129:8698–8699CrossRefGoogle Scholar
  21. 21.
    Chen JR, Jiao XX, Luo HQ, Li NB (2013) Probe-label-free electrochemical aptasensor based on methylene blue-anchored graphene oxide amplification. J Mater Chem B 1:861–864CrossRefGoogle Scholar
  22. 22.
    Rivas, L, Mayorga-Martinez, CC, Quesada-González, D, Zamora-Gálvez, A, de la Escosura-Muñiz, A, Merkoçi, A, (2015) Label-free impedimetric aptasensor for ochratoxin-a detection using iridium oxide nanoparticles. Anal Chem 87:5167–5172Google Scholar
  23. 23.
    Ma M, Zhuo Y, Yuan R, Chai Y (2015) New signal amplification strategy using semicarbazide as co-reaction accelerator for highly sensitive electrochemiluminescent aptasensor construction. Anal Chem 87:11389–11397CrossRefGoogle Scholar
  24. 24.
    Shanbhag BK, Liu C, Haritos VS, He L (2018) Understanding the interplay between self-assembling peptides and solution ions for tunable protein nanoparticle formation. ACS Nano 12:6956–6967CrossRefGoogle Scholar
  25. 25.
    Lawal AT (2018) Progress in utilisation of graphene for electrochemical biosensors. Biosens Bioelectron 106:149–178CrossRefGoogle Scholar
  26. 26.
    Shang Z, Chen Z, Zhang Z, Yu J, Tan S, Ciucci F, Shao Z, Lei H, Chen D (2018) CoFe nanoalloy particles encapsulated in nitrogen-doped carbon layers as bifunctional oxygen catalyst derived from a prussian blue analogue. J Alloy Compd 740:743–753CrossRefGoogle Scholar
  27. 27.
    Ahn W, Park MG, Lee DU, Seo MH, Jiang G, Cano ZP, Hassan FM, Chen Z (2018) Hollow multivoid nanocuboids derived from ternary Ni-co-Fe prussian blue analog for dual-electrocatalysis of oxygen and hydrogen evolution reactions. Adv Funct Mater 28:1802129CrossRefGoogle Scholar
  28. 28.
    Qian J, Ren C, Wang C, Chen W, Lu X, Li H, Liu Q, Hao N, Li H, Wang K (2018) Magnetically controlled fluorescence aptasensor for simultaneous determination of ochratoxin a and aflatoxin B1. Anal Chim Acta 1019:119–127CrossRefGoogle Scholar
  29. 29.
    Zhu X, Kou F, Xu H, Han Y, Yang G, Huang X, Chen W, Chi Y, Lin Z (2018) Label-free ochratoxin a electrochemical aptasensor based on target-induced noncovalent assembly of peroxidase-like graphitic carbon nitride nanosheet. Sensor Actuat B-Chem 270:263–269CrossRefGoogle Scholar
  30. 30.
    Myndrul V, Viter R, Savchuk M, Shpyrka N, Erts D, Jevdokimovs D, Silamiķelis V, Smyntyna V, Ramanavicius A, Iatsunskyi I (2018) Porous silicon-based photoluminescence immunosensor for rapid and highly-sensitive detection of ochratoxin a. Biosens Bioelectron 102:661–667CrossRefGoogle Scholar
  31. 31.
    Bonel L, Vidal JC, Duato P, Castillo JR (2011) An electrochemical competitive biosensor for ochratoxin a based on a DNA biotinylated aptamer. Biosens Bioelectron 26:3254–3259CrossRefGoogle Scholar
  32. 32.
    Chen J, Zhang X, Cai S, Wu D, Chen M, Wang S, Zhang J (2014) A fluorescent aptasensor based on DNA-scaffolded silver-nanocluster for ochratoxin a detection. Biosens Bioelectron 57:226–231CrossRefGoogle Scholar
  33. 33.
    Hun X, Liu F, Mei Z, Ma L, Wang Z, Luo X (2013) Signal amplified strategy based on target-induced strand release coupling cleavage of nicking endonuclease for the ultrasensitive detection of ochratoxin a. Biosens Bioelectron 39:145–151CrossRefGoogle Scholar
  34. 34.
    Tang J, Huang Y, Cheng Y, Huang L, Zhuang J, Tang D (2018) Two-dimensional MoS2 as a nano-binder for ssDNA: ultrasensitive aptamer based amperometric detection of ochratoxin a. Microchim Acta 185:162CrossRefGoogle Scholar
  35. 35.
    Qing Y, Li X, Chen S, Zhou X, Luo M, Xu X, Li C, Qiu J (2017) Differential pulse voltammetric ochratoxin a assay based on the use of an aptamer and hybridization chain reaction. Microchim Acta 184:863–870CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of OrthopedicsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
  2. 2.Henan Provincial Key Laboratory of Surface and Interface ScienceZhengzhou University of Light IndustryZhengzhouPeople’s Republic of China

Personalised recommendations