Advertisement

Microchimica Acta

, 186:353 | Cite as

Gold nanoclusters as a near-infrared fluorometric nanothermometer for living cells

  • Hailiang Zhang
  • Wenxiu Han
  • Xiaozheng Cao
  • Tang Gao
  • Ranran Jia
  • Meihui Liu
  • Wenbin ZengEmail author
Original Paper
  • 31 Downloads

Abstract

The authors describe the syntheses and application of glutathione-capped gold nanoclusters (AuNCs) with thermoresponsive properties. The AuNCs have excitation/emission maxima at 430/610 nm and the bright redfluorescence changes along with the temperature in the range from 0 to 90 °C which covers the normal temperature range of living cells. In the range of physiological temperatures (35–42 °C), the temperature resolution is 0.73 °C. The AuNCs display excellent colloidal stability and biocompatibility. They were used for fluorometric temperature detection and imaging of hepatic stellate cells. With such attractive features, the AuNCs are quite promising luminescence nanothermometers.

Graphical abstract

Schematic presentation of the fluorescence of glutathione-capped gold nanoclusters (AuNCs) as nanothermometers in living cells. The AuNCs have excitation/emission maxima at 430/610 nm and the red fluorescence changes with temperature in a wide range of 0 to 90 °C which covers the normal temperature of living cells.

Keywords

AuNCs NIR fluorescence Nanothermometer Temperature detection Cellular imaging 

Notes

Acknowledgements

The authors gratefully appreciate the support from the National Natural Science Foundation of China (81671756), Key Research Project of Science and Technology Foundation of Hunan Province (2017SK2093 and 2018GK5004), The State Key Laboratory of Drug Research (SIMM1803KF-14), andProjects of Medical and Health Technology Development Program in Shandong Province (2018WS471).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

References

  1. 1.
    Seymour RS (2001) Biophysics and physiology of temperature regulation in thermogenic flowers. Biosci Rep 21(2):223–236.  https://doi.org/10.1023/a:1013608627084 CrossRefPubMedGoogle Scholar
  2. 2.
    Bahat A, Tur-Kaspa I, Gakamsky A, Giojalas LC, Breitbart H, Eisenbach M (2003) Thermotaxis of mammalian sperm cells: a potential navigation mechanism in the female genital tract. Nat Med 9(2):149–150.  https://doi.org/10.1038/nm0203-149 CrossRefPubMedGoogle Scholar
  3. 3.
    Jaque D, Vetrone F (2012) Luminescence nanothermometry. Nanoscale 4(15):4301–4326.  https://doi.org/10.1039/c2nr30764b CrossRefPubMedGoogle Scholar
  4. 4.
    McCabe KM, Hernandez M (2010) Molecular thermometry. Pediatr Res 67(5):469–475.  https://doi.org/10.1203/PDR.0b013e3181d68cef CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Cui Y, Song R, Yu J, Liu M, Wang Z, Wu C, Yang Y, Wang Z, Chen B, Qian G (2015) Dual-emitting MOF supersetdye composite for ratiometric temperature sensing. Adv Mater 27(8):1420–1425.  https://doi.org/10.1002/adma.201404700 CrossRefPubMedGoogle Scholar
  6. 6.
    McLaurin EJ, Bradshaw LR, Gamelin DR (2013) Dual-emitting nanoscale temperature sensors. Chem Mater 25(8):1283–1292.  https://doi.org/10.1021/cm304034s CrossRefGoogle Scholar
  7. 7.
    Wang XD, Wolfbeis OS, Meier RJ (2013) Luminescent probes and sensors for temperature. Chem Soc Rev 42(19):7834–7869.  https://doi.org/10.1039/c3cs60102a CrossRefPubMedGoogle Scholar
  8. 8.
    Kucsko G, Maurer PC, Yao NY, Kubo M, Noh HJ, Lo PK, Park H, Lukin MD (2013) Nanometre-scale thermometry in a living cell. Nature 500(7460):54–58.  https://doi.org/10.1038/nature12373 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hayashi T, Fukuda N, Uchiyama S, Inada N (2015) A cell-permeable fluorescent polymeric thermometer for intracellular temperature mapping in mammalian cell lines. PLoS One 10(2):e0117677.  https://doi.org/10.1371/journal.pone.0117677 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Zhang W, Lin D, Wang H, Li J, Nienhaus GU, Su Z, Wei G, Shang L (2017) Supramolecular self-assembly bioinspired synthesis of luminescent gold nanocluster-embedded peptide nanofibers for temperature sensing and cellular imaging. Bioconjug Chem 28(9):2224–2229.  https://doi.org/10.1021/acs.bioconjchem.7b00312 CrossRefPubMedGoogle Scholar
  11. 11.
    Yeshchenko OA, Bondarchuk IS, Gurin VS, Dmitruk IM, Kotko AV (2012) Temperature dependence of the surface plasmon resonance in gold nanoparticles. Plasmonics 7(4):685–694CrossRefGoogle Scholar
  12. 12.
    Donner JS, Thompson SA, Kreuzer MP, Baffou G, Quidant R (2012) Mapping intracellular temperature using green fluorescent protein. Nano Lett 12(4):2107–2111.  https://doi.org/10.1021/nl300389y CrossRefPubMedGoogle Scholar
  13. 13.
    Mosshammer M, Brodersen KE, Kuhl M, Koren K (2019) Nanoparticle- and microparticle-based luminescence imaging of chemical species and temperature in aquatic systems: a review. Mikrochim Acta 186(2):126.  https://doi.org/10.1007/s00604-018-3202-y CrossRefPubMedGoogle Scholar
  14. 14.
    Zhang W, Abou El-Reash YG, Ding L, Lin Z, Lian Y, Song B, Yuan J, Wang XD (2018) A lysosome-targeting nanosensor for simultaneous fluorometric imaging of intracellular pH values and temperature. Mikrochim Acta 185(12):533.  https://doi.org/10.1007/s00604-018-3040-y CrossRefPubMedGoogle Scholar
  15. 15.
    Wong FH, Banks DS, Abu-Arish A, Fradin C (2007) A molecular thermometer based on fluorescent protein blinking. J Am Chem Soc 129(34):10302–10303.  https://doi.org/10.1021/ja0715905 CrossRefPubMedGoogle Scholar
  16. 16.
    Du P, Yu JS (2018) Synthesis of Er(III)/Yb(III)-doped BiF3 upconversion nanoparticles for use in optical thermometry. Mikrochim Acta 185(4):237.  https://doi.org/10.1007/s00604-018-2777-7 CrossRefPubMedGoogle Scholar
  17. 17.
    Xu S, Yu Y, Gao Y, Zhang Y, Li X, Zhang J, Wang Y, Chen B (2018) Mesoporous silica coating NaYF4:Yb,Er@NaYF4 upconversion nanoparticles loaded with ruthenium(II) complex nanoparticles: Fluorometric sensing and cellular imaging of temperature by upconversion and of oxygen by downconversion. Mikrochim Acta 185(10):454.  https://doi.org/10.1007/s00604-018-2965-5 CrossRefPubMedGoogle Scholar
  18. 18.
    Li Y, Li Y, Wang R, Zheng W (2018) Effect of silica surface coating on the luminescence lifetime and upconversion temperature sensing properties of semiconductor zinc oxide doped with gallium(III) and sensitized with rare earth ions Yb(III) and Tm(III). Mikrochim Acta 185(3):197.  https://doi.org/10.1007/s00604-018-2733-6 CrossRefPubMedGoogle Scholar
  19. 19.
    Maestro LM, Rodríguez EM, Rodríguez FS, la Cruz MCI-d, Juarranz A, Naccache R, Vetrone F, Jaque D, Capobianco JA, Solé JG (2010) CdSe quantum dots for two-photon fluorescence thermal imaging. Nano Lett 10(12):5109–5115.  https://doi.org/10.1021/nl1036098 CrossRefPubMedGoogle Scholar
  20. 20.
    Albers AE, Chan EM, McBride PM, Ajo-Franklin CM, Cohen BE, Helms BA (2012) Dual-emitting quantum dot/quantum rod-based nanothermometers with enhanced response and sensitivity in live cells. J Am Chem Soc 134(23):9565–9568.  https://doi.org/10.1021/ja302290e CrossRefPubMedGoogle Scholar
  21. 21.
    Wang C, Ling L, Yao Y, Song Q (2015) One-step synthesis of fluorescent smart thermo-responsive copper clusters: a potential nanothermometer in living cells. Nano Res 8(6):1975–1986.  https://doi.org/10.1007/s12274-015-0707-0 CrossRefGoogle Scholar
  22. 22.
    Ghosh S, Das NK, Anand U, Mukherjee S (2015) Photostable copper nanoclusters: compatible forster resonance energy-transfer assays and a nanothermometer. J Phys Chem Lett 6(7):1293–1298.  https://doi.org/10.1021/acs.jpclett.5b00378 CrossRefPubMedGoogle Scholar
  23. 23.
    Yang Y, Chen L, Jiang F, Yu M, Wan X, Zhang B, Hong M (2017) A family of doped lanthanide metal–organic frameworks for wide-range temperature sensing and tunable white light emission. J Mater Chem C 5(8):1981–1989.  https://doi.org/10.1039/c6tc05316e CrossRefGoogle Scholar
  24. 24.
    Zhang Y, Yan M, Wang S, Jiang J, Gao P, Zhang G, Dong C, Shuang S (2016) Facile one-pot synthesis of Au(0)@Au(i)–NAC core–shell nanoclusters with orange-yellow luminescence for cancer cell imaging. RSC Adv 6(11):8612–8619.  https://doi.org/10.1039/c5ra22813a CrossRefGoogle Scholar
  25. 25.
    Luo Z, Yuan X, Yu Y, Zhang Q, Leong DT, Lee JY, Xie J (2012) From aggregation-induced emission of Au(I)-thiolate complexes to ultrabright Au(0)@Au(I)-thiolate core-shell nanoclusters. J Am Chem Soc 134(40):16662–16670.  https://doi.org/10.1021/ja306199p CrossRefPubMedGoogle Scholar
  26. 26.
    Wuttke S, Zimpel A, Bein T, Braig S, Stoiber K, Vollmar A, Muller D, Haastert-Talini K, Schaeske J, Stiesch M, Zahn G, Mohmeyer A, Behrens P, Eickelberg O, Bolukbas DA, Meiners S (2017) Validating metal-organic framework nanoparticles for their Nanosafety in diverse biomedical applications. Adv Healthc Mater 6(2).  https://doi.org/10.1002/adhm.201600818
  27. 27.
    Lo S-H, Wu M-C, Wu S-P (2015) A turn-on fluorescent sensor for cysteine based on BODIPY functionalized Au nanoparticles and its application in living cell imaging. Sensors Actuators B Chem 221:1366–1371.  https://doi.org/10.1016/j.snb.2015.08.015 CrossRefGoogle Scholar
  28. 28.
    Bai X, Xu S, Wang L (2018) Full-range pH stable Au-clusters in Nanogel for confinement-enhanced emission and improved sulfide sensing in living cells. Anal Chem 90:3270–3275.  https://doi.org/10.1021/acs.analchem.7b04785 CrossRefPubMedGoogle Scholar
  29. 29.
    Jeong EH, Jung G, Hong CA, Lee H (2014) Gold nanoparticle (AuNP)-based drug delivery and molecular imaging for biomedical applications. Arch Pharm Res 37(1):53–59.  https://doi.org/10.1007/s12272-013-0273-5 CrossRefPubMedGoogle Scholar
  30. 30.
    Chen Y, Montana DM, Wei H, Cordero JM, Schneider M, Le Guevel X, Chen O, Bruns OT, Bawendi MG (2017) Shortwave infrared in vivo imaging with gold nanoclusters. Nano Lett 17(10):6330–6334.  https://doi.org/10.1021/acs.nanolett.7b03070 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Tanimoto R, Hiraiwa T, Nakai Y, Shindo Y, Oka K, Hiroi N, Funahashi A (2016) Detection of temperature difference in neuronal cells. Sci Rep 6(1).  https://doi.org/10.1038/srep22071
  32. 32.
    Nigoghossian K, Messaddeq Y, Boudreau D, Ribeiro SJL (2017) UV and temperature-sensing based on NaGdF4:Yb3+:Er3+@SiO2–Eu(tta)3. ACS Omega 2(5):2065–2071.  https://doi.org/10.1021/acsomega.7b00056 CrossRefGoogle Scholar
  33. 33.
    Chen X, Essner JB, Baker GA (2014) Exploring luminescence-based temperature sensing using protein-passivated gold nanoclusters. Nanoscale 6(16):9594.  https://doi.org/10.1039/c4nr02069c CrossRefPubMedGoogle Scholar
  34. 34.
    Wuttke S, Zimpel A, Bein T, Braig S, Stoiber K, Vollmar A, Müller D, Haastert-Talini K, Schaeske J, Stiesch M (2017) Validating metal-organic framework nanoparticles for their nanosafety in diverse biomedical applications. Adv Healthc Mater 6(2)1600818.  https://doi.org/10.1002/adhm.201600818
  35. 35.
    Li Y, Jin J, Wang D, Lv J, Ke H, Liu Y, Chen C, Tang Z (2018) Coordination-responsive drug release inside gold nanorod@metal-organic framework core–shell nanostructures for near-infrared-induced synergistic chemo-photothermal therapy. Nano Res:1–11(6).3294–3305.  https://doi.org/10.1007/s12274-017-1874-y
  36. 36.
    Wu Z, Jin R (2010) On the ligand's role in the fluorescence of gold nanoclusters. Nano Lett 10(7):2568–2573.  https://doi.org/10.1021/nl101225f CrossRefPubMedGoogle Scholar
  37. 37.
    Hu L, de la Rama LP, Efremov MY, Anahory Y, Schiettekatte F, Allen LH (2011) Synthesis and characterization of single-layer silver-decanethiolate lamellar crystals. J Am Chem Soc 133(12):4367–4376.  https://doi.org/10.1021/ja107817x CrossRefPubMedGoogle Scholar
  38. 38.
    Jin M, Chung TS, Seki T, Ito H, Garcia-Garibay MA (2017) Phosphorescence control mediated by molecular rotation and aurophilic interactions in amphidynamic crystals of 1,4-bis[tri-(pfluorophenyl)phosphane-gold(I)-ethynyl]benzene. J Am Chem Soc 139(49):18115–18121.  https://doi.org/10.1021/jacs.7b11316 CrossRefPubMedGoogle Scholar
  39. 39.
    Lavenn C, Guillou N, Monge M, Podbevšek D, Gilles Ledoux G, Fateeva A, Demessence A (2016) Shedding light on an ultra-bright photoluminescent lamellar gold thiolate coordination polymer, [Au(p-SPhCO2Me)]n. Chem Commun 52(58):9063–9066.  https://doi.org/10.1039/C5CC10448C CrossRefGoogle Scholar
  40. 40.
    Pyo K, Thanthirige VD, Kwak K, Pandurangan P, Ramakrishna G, Lee D (2015) Ultrabright luminescence from gold nanoclusters: rigidifying the Au(I)-thiolate Shell. J Am Chem Soc 137(25):8244–8250.  https://doi.org/10.1021/jacs.5b04210 CrossRefPubMedGoogle Scholar
  41. 41.
    Wang S, Westcott S, Chen W (2015) Nanoparticle luminescence thermometry. Jphyschemb 106(43):11203–11209Google Scholar
  42. 42.
    He S, Song J, Qu J, Cheng Z (2018) Crucial breakthrough of second near-infrared biological window fluorophores: design and synthesis toward multimodal imaging and theranostics. Chem Soc Rev 47(12):4258–4278.  https://doi.org/10.1039/c8cs00234g CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Hailiang Zhang
    • 1
    • 2
  • Wenxiu Han
    • 2
  • Xiaozheng Cao
    • 1
  • Tang Gao
    • 1
  • Ranran Jia
    • 1
  • Meihui Liu
    • 1
    • 3
  • Wenbin Zeng
    • 1
    Email author
  1. 1.Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaChina
  2. 2.Institute of Clinical Pharmacy & Pharmacology, Jining First People’s HospitalJining Medical UniversityJiningChina
  3. 3.Hunan Huacheng Biotech, Inc.ChangshaChina

Personalised recommendations