Advertisement

Microchimica Acta

, 186:289 | Cite as

A review on nanomaterial-based electrochemical, optical, photoacoustic and magnetoelastic methods for determination of uranyl cation

  • Leila FarzinEmail author
  • Mojtaba ShamsipurEmail author
  • Shahab Sheibani
  • Leila Samandari
  • Zahra Hatami
Review Article
  • 110 Downloads

Abstract

This review (with 177 refs) gives an overview on nanomaterial-based methods for the determination of uranyl ion (UO22+) by different types of transducers. Following an introduction into the field, a first large section covers the fundamentals of selective recognition of uranyl ion by receptors such as antibodies, aptamers, DNAzymes, peptides, microorganisms, organic ionophores (such as salophens, catechols, phenanthrolines, annulenes, benzo-substituted macrocyclic diamides, organophosphorus receptors, calixarenes, crown ethers, cryptands and β-diketones), by ion imprinted polymers, and by functionalized nanomaterials. A second large section covers the various kinds of nanomaterials (NMs) used, specifically on NMs for electrochemical signal amplification, on NMs acting as signal tags or carriers for signal tags, on fluorescent NMs, on NMs for colorimetric assays, on light scattering NMs, on NMs for surface enhanced Raman scattering (SERS)-based assays and wireless magnetoelastic detection systems. We then discuss detection strategies, with subsections on electrochemical methods (including ion-selective and potentiometric systems, voltammetric systems and impedimetric systems). Further sections treat colorimetric, fluorometric, resonance light scattering-based, SERS-based and photoacoustic methods, and wireless magnetoelastic detection. The current state of the art is summarized, and current challenges are discussed at the end.

Graphical abstract

An overview is given on nanomaterial-based methods for the detection of uranyl ion by different types of transducers (such as electrochemical, optical, photoacoustic, magnetoelastic, etc) along with a critical discussion of their limitations, benefits and application to real samples.

Keywords

Actinides Bioreceptors Functionalized nanomaterials Ion imprinted polymers Organic ionophores Point-of-care detection 

Notes

Acknowledgments

The authors greatly appreciate the support of this work by Research Councils of Nuclear Science and Technology Research Institute and Razi University.

Compliance with ethical standards

The author(s) declare that they have no competing interests.

References

  1. 1.
    Yue YC, Li MH, Wang HB, Zhang BL, He W (2018) The toxicological mechanisms and detoxification of depleted uranium exposure. Environ Health Prev Med 23:18PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Liu J, Brown AK, Meng X, Cropek DM, Istok JD, Watson DB, Lu Y (2007) A catalytic beacon sensor for uranium with parts-per-trillion sensitivity and millionfold selectivity. PNAS 104:2056–2061CrossRefGoogle Scholar
  3. 3.
    Shamsipur M, Fasihi J, Ashtari K (2007) Grafting of ion-imprinted polymers on the surface of silica gel particles through covalently surface-bound initiators: a selective sorbent for uranyl ion. Anal Chem 79:7116–7123CrossRefGoogle Scholar
  4. 4.
    Schramel P, Wendler I, Roth P, Werner E (1997) Method for the determination of thorium and uranium in urine by ICP-MS. Microchim Acta 126:263–266CrossRefGoogle Scholar
  5. 5.
    Shaw MJ, Hill SJ, Jones P, Nesterenko PN (2000) Determination of uranium in environmental matrices by chelation ion chromatography using a high performance substrate dynamically modified with 2,6-pyridinedicarboxylic acid. Chromatographia 51:695–700CrossRefGoogle Scholar
  6. 6.
    Soomro R, Memon SQ, Ahmed MJ, Memon N, Mallah A (2012) Bis(salicylaldehyde) orthophenylenediamine as complexing reagent in simultaneous fetermination of gold, chromium, iron, uranyl, and nickel using capillary zone electrophoresis. Acta Chromatogr 24:543–558CrossRefGoogle Scholar
  7. 7.
    Santos JS, Teixeira LS, dos Santos WN, Lemos VA, Godoy JM, Ferreira SL (2010) Uranium determination using atomic spectrometric techniques: an overview. Anal Chim Acta 674:143–156CrossRefGoogle Scholar
  8. 8.
    Danielsson A, Rönnholm B, Kjellström LE, Ingman F (1973) Fluorimetric method for the determination of uranium in natural waters. Talanta 20:185–192CrossRefGoogle Scholar
  9. 9.
    Hassan J, Hosseini SM, Mozaffar S, Jahanparast B, Karbasi MH (2014) Thin film-XRF determination of uranium following thin-film solid phase extraction. J Braz Chem Soc 25:1086–1090Google Scholar
  10. 10.
    Shamsipur M, Ghiasvand AR, Yamini Y (1999) Solid-phase extraction of ultratrace uranium(VI) in natural waters using octadecyl silica membrane disks modified by tri-n-octylphosphine oxide and its spectrophotometric determination with dibenzoylmethane. Anal Chem 71:4892–4895CrossRefGoogle Scholar
  11. 11.
    Landsberger S, Kapsimalis R (2013) Comparison of neutron activation analysis techniques for the determination of uranium concentrations in geological and environmental materials. J Environ Radioact 117:41–44CrossRefGoogle Scholar
  12. 12.
    Lehritani M, Mantero J, Casacuberta N, Masqué P, García-Tenorio R (2012) Comparison of two sequential separation methods for U and Th determination in environmental samples by alpha-particle spectrometry. Radiochim Acta 100:431–438CrossRefGoogle Scholar
  13. 13.
    Peled Y, Krent E, Tal N, Tobias H, Mandler D (2015) Electrochemical determination of low levels of uranyl by a vibrating gold microelectrode. Anal Chem 87:768–776CrossRefGoogle Scholar
  14. 14.
    Gwak R, Kim H, Yoo SM, Lee SY, Lee GJ, Lee MK, Rhee CK, Kang T, Kim B (2016) Precisely determining ultralow level UO2 2+ in natural water with plasmonic nanowire interstice sensor. Sci Report 6:1–7CrossRefGoogle Scholar
  15. 15.
    Farzin L, Shamsipur M, Sheibani S (2017) A review: aptamer-based analytical strategies using the nanomaterials for environmental and human monitoring of toxic heavy metals. Talanta 174:619–627CrossRefGoogle Scholar
  16. 16.
    Farzin L, Shamsipur M, Samandari L, Sheibani S (2018) Advances in the design of nanomaterial-based electrochemical affinity and enzymatic biosensors for metabolic biomarkers: a review. Microchim Acta 185:276CrossRefGoogle Scholar
  17. 17.
    Pérez-López B, Merkoçi A (2011) Nanomaterials based biosensors for food analysis applications. Trends Food Sci Technol 22:625–639CrossRefGoogle Scholar
  18. 18.
    Holzinger M, Le Goff A, Cosnier S (2014) Nanomaterials for biosensing applications: a review. Front Chem 2:63PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Lee JH, Wang Z, Liu J, Lu Y (2008) Highly sensitive and selective colorimetric sensors for uranyl (UO2 2+): development and comparison of labeled and label-free DNAzyme-gold nanoparticle systems. J Am Chem Soc 130:14217–14226PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Liang Y, He Y (2016) Arsenazo III-functionalized gold nanoparticles for photometric determination of uranyl ion. Microchim Acta 183:407–413CrossRefGoogle Scholar
  21. 21.
    Khosraviani M, Blake RC, Pavlov AR, Lorbach SC, Yu H, Delehanty JB, Brechbiel MW, Blake DA (2000) Binding properties of a monoclonal antibody directed toward lead-chelate complexes. Bioconjug Chem 11:267–277CrossRefGoogle Scholar
  22. 22.
    Feng X, Pak RH, Kroger LA, Moran JK, DeNardo DG, Meares CF, DeNardo GL, DeNardo SJ (1998) New anti-cu-TETA and anti-Y-DOTA monoclonal antibodies for potential use in the pre-targeted delivery of radiopharmaceuticals to tumors. Hybridoma 17:125–132CrossRefGoogle Scholar
  23. 23.
    Blake RC II, Pavlov AR, Khosraviani M, Ensley HE, Kiefer GE, Yu H, Li X, Blake DA (2004) Novel monoclonal antibodies with specificity for chelated uranium (VI): isolation and binding properties. Bioconjug Chem 15:1125–1136CrossRefGoogle Scholar
  24. 24.
    Blake DA, Pavlov AR, Yu H, Kohsraviani M, Ensley HE, Blake RC II (2001) Antibodies and antibody-based assays for hexavalent uranium. Anal Chim Acta 444:3–11CrossRefGoogle Scholar
  25. 25.
    Zhou W, Saran R, Liu J (2017) Metal sensing by DNA. Chem Rev 117:8272–8325CrossRefGoogle Scholar
  26. 26.
    Kim J, Kim MY, Kim HS, Hah SS (2011) Binding of uranyl ion by a DNA aptamer attached to a solid support. Bioorg Med Chem Lett 21:4020–4022CrossRefGoogle Scholar
  27. 27.
    Jarczewska M, Ziółkowski R, Górski Ł, Malinowska E (2014) Electrochemical uranyl cation biosensor with DNA oligonucleotides as receptor layer. Bioelectrochemistry 96:1–6CrossRefGoogle Scholar
  28. 28.
    Kruger K, Grabowski PJ, Zaug AJ, Sands J, Gottschling DE, Cech TR (1982) Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 31:147–157CrossRefGoogle Scholar
  29. 29.
    Guerrier-Takada C, Gardiner K, Marsh T, Pace N, Altman S (1983) The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35:849–857CrossRefGoogle Scholar
  30. 30.
    Breaker RR, Joyce GF (1994) A DNA enzyme that cleaves RNA. Chem Biol 1:223–229PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Brown AK, Liu J, He Y, Lu Y (2009) Biochemical characterization of a uranyl ion-specific DNAzyme. ChemBioChem 10:486–492CrossRefGoogle Scholar
  32. 32.
    Huang C, Fan X, Yuan Q, Zhang X, Hou X, Wu P (2018) Colorimetric determination of uranyl (UO2 2+) in seawater via DNAzyme-modulated photosensitization. Talanta 185:258–263CrossRefGoogle Scholar
  33. 33.
    Jett SE, Bonham AJ (2017) Reusable electrochemical DNA biosensor for the detection of waterborne uranium. ChemElectroChem 4:843–845CrossRefGoogle Scholar
  34. 34.
    Yun W, Jiang J, Cai D, Wang X, Sang G, Liao J, Lu T, Yan K (2016) Ultrasensitive electrochemical detection of UO2 2+ based on DNAzyme and isothermal enzyme-free amplification. RSC Adv 6:3960–3966CrossRefGoogle Scholar
  35. 35.
    Wu P, Hwang K, Lan T, Lu Y (2013) A DNAzyme-gold nanoparticle probe for uranyl ion in living cells. J Am Chem Soc 135:5254–5257PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Huang H, Chaudhary S, Van Horn JD (2005) Uranyl-peptide interactions in carbonate solution with DAHK and derivatives. Inorg Chem 44:813–815CrossRefGoogle Scholar
  37. 37.
    Safi S, Creff G, Jeanson A, Qi L, Basset C, Roques J, Solari PL, Simoni E, Vidaud C, Den Auwer C (2013) Osteopontin: a uranium phosphorylated binding-site characterization. Chem Eur J 19:11261–11269CrossRefGoogle Scholar
  38. 38.
    Le Clainche L, Vita C (2006) Selective binding of uranyl cation by a novel calmodulin peptide. Environ Chem Lett 4:45–49CrossRefGoogle Scholar
  39. 39.
    Yang CT, Han J, Gu M, Liu J, Li Y, Huang Z, Yu HZ, Hu S, Wang X (2015) Fluorescent recognition of uranyl ions by a phosphorylated cyclic peptide. Chem Commun 51:11769–11772CrossRefGoogle Scholar
  40. 40.
    Lebrun C, Starck M, Gathu V, Chenavier Y, Delangle P (2014) Engineering short peptide sequences for uranyl binding. Chem Eur J 20:16566–16573CrossRefGoogle Scholar
  41. 41.
    Hillson NJ, Hu P, Andersen GL, Shapiro L (2007) Caulobacter crescentus as a whole-cell uranium biosensor. Appl Environ Microbiol 73:7615–7621PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Nakajima A, Sakaguchi T (1986) Selective accumulation of heavy metals by microorganisms. Appl Microbiol Biotechnol 24:59–64Google Scholar
  43. 43.
    Pollmann K, Raff J, Schnorpfeil M, Radeva G, Selenska-Pobell S (2005) Novel surface layer protein genes in Bacillus sphaericus associated with unusual insertion elements. Microbiology 151:2961–2973CrossRefGoogle Scholar
  44. 44.
    Conroy DJR, Millner PA, Stewart DI, Pollmann K (2010) Biosensing for the environment and defence: aqueous uranyl detection using bacterial surface layer proteins. Sensors 10:4739–4755CrossRefGoogle Scholar
  45. 45.
    Fasihi J, Alahyari A, Shamsipur M, Sharghi H, Charkhi A (2011) Adsorption of uranyl ion onto an anthraquinone basedion-imprinted copolymer. React Funct Polym 71:803–808CrossRefGoogle Scholar
  46. 46.
    Xu C, Tian G, Teat SJ, Rao L (2013) Complexation of U(VI) with dipicolinic acid: thermodynamics and coordination modes. Inorg Chem 52:2750–2756CrossRefGoogle Scholar
  47. 47.
    Maji S, Viswanathan KS (2009) Sensitization of uranium fluorescence using 2,6-pyridinedicarboxylic acid: application for the determination of uranium in the presence of lanthanides. J Lumin 129:1242–1248CrossRefGoogle Scholar
  48. 48.
    Gholivand MB, Nassab HR, Fazeli H (2005) Cathodic adsorptive stripping voltammetric determination of uranium(VI) complexed with 2, 6-pyridinedicarboxylic acid. Talanta 65:62–66CrossRefGoogle Scholar
  49. 49.
    Zakharieva O, Kremleva A, Krüger S, Rösch N (2011) Uranyl complexation by monodentate nitrogen donor ligands. A relativistic density functional study. Int J Quantum Chem 111:2045–2053CrossRefGoogle Scholar
  50. 50.
    Elabd AA, Elhefnawy OA (2016) An efficient and sensitive optical sensor based on furosemide as a new fluoroionophore for determination of uranyl ion. J Fluoresc 26:271–276CrossRefGoogle Scholar
  51. 51.
    Wen J, Huang Z, Hu S, Li S, Li W, Wang X (2016) Aggregation-induced emission active tetraphenylethene-based sensorfor uranyl ion detection. J Hazard Mater 318:363–370CrossRefGoogle Scholar
  52. 52.
    Shen X, Liao LF, Chen L, He YF, Xu CH, Xiao XL, Lin YW, Nie CM (2014) Spectroscopic study on the reactions of bis-salophen with uranyl and then with fructose 1,6-bisphosphate and the analytical application. Spectrochim Acta: Part A 123:110–116CrossRefGoogle Scholar
  53. 53.
    Chen X, Peng L, Feng M, Xiang Y, Tong A, He L, Liu B, Tang Y (2017) An aggregation induced emissionen hancement-based ratiometric fluorescent sensor for detecting trace uranyl ion (UO2 2+) and the application in living cells imaging. J Lumin 186:301–306CrossRefGoogle Scholar
  54. 54.
    Chen X, He L, Wang Y, Liu B, Tang Y (2014) Trace analysis of uranyl ion (UO2 2+) in aqueous solution by fluorescence turn-on detection via aggregation induced emission enhancement effect. Anal Chim Acta 847:55–60CrossRefGoogle Scholar
  55. 55.
    Li G, Li J, Han Q (2016) Determination of trace uranium by a photocatalytic resonance fluorescence method coupled with dual cloud point extraction. Anal Methods 8:5984–5993CrossRefGoogle Scholar
  56. 56.
    Kim DW, Park KW, Yang MH, Kim J, Lee SS, Kim JS (2006) SalphenH2 as a neutral carrier for the uranyl ion-selective PVC membrane sensor. Bull Kor Chem Soc 27:899–902CrossRefGoogle Scholar
  57. 57.
    Shamsipur M, Saeidi M, Yari A, Yaganeh-Faal A, Mashhadizadeh MH, Azimi G, Naeimi H, Sharghi H (2004) UO2 2+ ion-selective membrane electrode based on a naphthol-derivative Schiff's base 2,2′-[1,2-Ethandiyl bis(nitriloethylidene)]bis(1-naphthalene). Bull Kor Chem Soc 25:629–633CrossRefGoogle Scholar
  58. 58.
    Munoz J, Montes R, Bastos-Arrieta J, Guardingo M, Busqué F, Ruíz-Molina D, Palet C, García-Orellana J, Baeza M (2018) Carbon nanotube-based nanocomposite sensor tuned with a catechol as novel electrochemical recognition platform of uranyl ion in aqueous samples. Sens Actuators B-Chem 273:1807–1815CrossRefGoogle Scholar
  59. 59.
    Van Den Berg CM, Huang ZQ (1984) Determination of uranium (VI) in sea water by cathodic stripping voltammetry of complexes with catechol. Anal Chim Acta 164:209–222CrossRefGoogle Scholar
  60. 60.
    Shamsipur M, Mohammadi M, Taherpour A, Garau A, Lippolis V (2015) Highly selective and sensitive fluorescence optode membrane for uranyl ion based on 5-(9-anthracenylmethyl)-5-aza-2,8-dithia[9],(2,9)-1,10-phenanthrolinophane. RSC Adv 5: 92061–92070CrossRefGoogle Scholar
  61. 61.
    Shamsipur M, Mizani F, Alizadeh K, Mousavi MF, Lippolis V, Garau A, Caltagirone C (2008) Flow injection potentiometry by a novel coated graphite electrode based on 5-(9-anthracenylmethyl)-5-aza-2,8-dithia[9],(2,9)-1,10-phenanthrolinophane for the selective determination of uranyl ions. Sens Actuators B-Chem 130:300–309CrossRefGoogle Scholar
  62. 62.
    Lashley MA, Ivanov AS, Bryantsev VS, Dai S, Hancock RD (2016) Highly preorganized ligand 1,10-Phenanthroline-2,9-dicarboxylic acid for the selective recovery of uranium from seawater in the presence of competing vanadium species. Inorg Chem 55:10818–10829CrossRefGoogle Scholar
  63. 63.
    Hohloch S, Garner ME, Parker BF, Arnold J (2017) New supporting ligands in actinide chemistry: tetramethyltetraazaannulene complexes with thorium and uranium. Dalton Trans 46:13768–13782CrossRefGoogle Scholar
  64. 64.
    Shamsipur M, Mizani F, Mousavi MF, Alizadeh N, Alizadeh K, Eshghi H, Karimi H (2007) A novel flow injection potentiometric graphite coated ion-selective electrode for the low level determination of uranyl ion. Anal Chim Acta 589:22–32CrossRefGoogle Scholar
  65. 65.
    Shamsipur M, Soleymanpour A, Akhond M, Sharghi H, Massah AR (2002) Uranyl-selective PVC membrane electrodes based on some recently synthesized benzo-substituted macrocyclic diamides. Talanta 58:237–246CrossRefGoogle Scholar
  66. 66.
    Tyagi S, Agarwal H, Ikram S, Gupta MK, Singh S (2011) Uranyl selective polymeric membrane sensor based on P-tert-butyl-biscalix[4]arene. Anal Bioanal Electrochem 3:350–364Google Scholar
  67. 67.
    Kubicki JD, Halada GP, Jha P, Phillips BL (2009) Quantum mechanical calculation of aqueuous uranium complexes: carbonate, phosphate, organic and biomolecular species. Chem Cent J 3:1–29CrossRefGoogle Scholar
  68. 68.
    Burger LL (1958) Uranium and plutonium extraction by organophosphorus compounds. J Phys Chem 6:590–593CrossRefGoogle Scholar
  69. 69.
    Badr IHA, Zidan WI, Akl ZF (2012) A novel neutral carrier for uranyl ion based on a commercially available aminophosphate derivative: evaluation in membrane electrodes and nuclear safeguards applications. Electroanalysis 24:2309–2316CrossRefGoogle Scholar
  70. 70.
    Ramkumar J, Maiti B (2003) Nafion-coated uranyl selective electrode based on calixarene and tri-n-octyl phosphine oxide. Sens Actuators B-Chem 96:527–532CrossRefGoogle Scholar
  71. 71.
    Florido A, Casas I, Garcı’a-Raurich J, Arad-Yellin R, Warshawsky A (2000) Uranyl-selective electrode based on a new bifunctional derivative combining the synergistic properties of phosphine oxide and ester of phosphoric acid. Anal Chem 72:1604–1610CrossRefGoogle Scholar
  72. 72.
    Petrukhin OM, Avdeeva EN, Zhukov AF, Polosuchina IB, Krylova SA, Rogatinskaya SL, Bodrin GV, Nesterova NP, Polikarpov YM, Kabachnik MI (1991) Bidentate organophosphorus compounds as ionophores for calcium- and uranyl-selective electrodes. Analyst 116:715–719CrossRefGoogle Scholar
  73. 73.
    Masci B, Nierlich M, Thuéry P (2002) Supramolecular assemblies from uranyl ion complexes of hexahomotrioxacalix[3]arenes and protonated [2.2.2]cryptand. New J Chem 26:766–774CrossRefGoogle Scholar
  74. 74.
    Duncan DM, Cockayne JS (2001) Application of calixarene ionophores in PVC based ISEs for uranium detection. Sens Actuators B-Chem 73:228–235CrossRefGoogle Scholar
  75. 75.
    Gupta VK, Mangla R, Khurana U, Kumar P (1999) Determination of uranyl ions using poly(vinyl chloride) based 4-tert-butylcalix[6]arene membrane sensor. Electroanalysis 11:573–576CrossRefGoogle Scholar
  76. 76.
    Jung J, Cho YH, Hahn PS (1999) Scavenging of UO2 2+ using 4-sulfonic calix[6]arene in the presence of goethite. J Radioanal Nucl Chem 242:635–639CrossRefGoogle Scholar
  77. 77.
    Pederscn CJ (1967) Cyclic polyethers and their complexes with metal salts. J Am Chem Soc 89:7017–7036CrossRefGoogle Scholar
  78. 78.
    Agrahari SK, Kumar SD, Srivastava AK (2014) Ion selective electrode for uranium based on composite multiwalled carbon nanotube-benzo-15-crown-5 in PVC matrix coated on graphite rod. J Anal Chem 69:36–44CrossRefGoogle Scholar
  79. 79.
    Kakhki RMZ, Rounaghi G (2011) Selective uranyl cation detection by polymeric ion selective electrode based on benzo-15-crown-5. Mater Sci Eng C 31:1637–1642CrossRefGoogle Scholar
  80. 80.
    Dietrich B, Lehn JM, Sauvage JP (1969) Les Cryptates. Tetrahedron Lett 10:2889–2892CrossRefGoogle Scholar
  81. 81.
    Brighli M, Fux P, Lagrange J, Lagrange P (1985) Discussion on the complexing ability of the uranyl ion with several crown ethers and cryptands in water and in propylene carbonate. Inorg Chem 24:80–84CrossRefGoogle Scholar
  82. 82.
    Huh DN, Windorff CJ, Ziller JW, Evans WJ (2018) Synthesis of uranium-in-cryptand complexes. Chem Commun 54:10272–10275CrossRefGoogle Scholar
  83. 83.
    Ghanbari M, Rounaghi GH, Ashraf N (2017) An uranyl solid state PVC membrane potentiometric sensor based on 4,13-didecyl-1,7,10,16-tetraoxa-4,13-diazacyclooctadecane and its application for environmental samples. Int J Environ Anal Chem 97:189–200CrossRefGoogle Scholar
  84. 84.
    Kim BI, Miyake C, Imoto S (1975) Uranyl complexes with bis(β-diketone)diimine: spectroscopic studies on the uranyl complexes with bis(acetylacetone)ethylenediimine and its derivatives. J Inorg Nucl Chem 37:963–969CrossRefGoogle Scholar
  85. 85.
    Purushottam D, Atchaiah M (1963) Colorimetric estimation of uranium with β-diketones. Fresenius J Anal Chem 196:85–87CrossRefGoogle Scholar
  86. 86.
    Akl ZF (2017) Electrochemical selective determination of uranyl ions using PVC membrane sensor. Electroanalysis 29:1459–1468CrossRefGoogle Scholar
  87. 87.
    Shamsipur M, Davarkhah R, Khanchi AR (2010) Facilitated transport of uranium(VI) across a bulk liquid membrane containing thenoyltrifluoroacetone in the presence of crown ethers as synergistic agents. Sep Purif Technol 71:63–69CrossRefGoogle Scholar
  88. 88.
    Behbahani M, Salarian M, Bagheri A, Tabani H, Omidi F, Fakhari A (2014) Synthesis, characterization and analytical application of Zn(II)-imprinted polymer as an efficient solid-phase extraction technique for trace determination of zinc ions in food samples. J Food Compos Anal 34:81–89CrossRefGoogle Scholar
  89. 89.
    Fasihi J, Shamsipur M, Khanch AR, Mahani M, Ashtari K (2016) Imprinted polymer grafted from silica particles for on-line trace enrichment and ICP OES determination of uranyl ion. Microchem J 126:316–321CrossRefGoogle Scholar
  90. 90.
    Sadeghi S, Mofrad AA (2007) Synthesis of a new ion imprinted polymer material for separation and preconcentration of traces of uranyl ions. React Funct Polym 67:966–976CrossRefGoogle Scholar
  91. 91.
    Samandari L, Shamsipur M, Besharati-Seidani A, Pashabadi A (2018) Synthesis, characterization and using a new terpyridine moiety-based ion-imprinted polymer nanoparticle: sub-nanomolar detection of Pb(II) in biological and water samples. Chem Pap 72:2707–2717CrossRefGoogle Scholar
  92. 92.
    Farzin L, Shamsipur M, Shanehsaz M, Sheibani S (2017) A new approach to extraction and preconcentration of Ce(III) from aqueous solutions using magnetic reduced graphene oxide decorated with thioglycolic-acid-capped CdTe QDs. Int J Environ Anal Chem 97:854–867CrossRefGoogle Scholar
  93. 93.
    Zhao M, Fan GC, Chen JJ, Shi JJ, Zhu JJ (2015) Highly sensitive and selective photoelectrochemical biosensor for Hg2+ detection based on dual signal amplification by exciton energy transfer coupled with sensitization effect. Anal Chem 87:12340–12347CrossRefGoogle Scholar
  94. 94.
    Jin LH, Han CS (2014) Ultrasensitive and selective fluorimetric detection of copper ions using thiosulfate-involved quantum dots. Anal Chem 86:7209–7213CrossRefGoogle Scholar
  95. 95.
    Zhao Q, Rong X, Ma H, Tao G (2013) Dithizone functionalized CdSe/CdS quantum dots as turn-on fluorescent probe for ultrasensitive detection of lead ion. J Hazard Mater 250-251:45–52CrossRefGoogle Scholar
  96. 96.
    Dutta RK, Kumar A (2016) Highly sensitive and selective method for detecting ultra-trace levels of aqueous uranyl ions by strongly photoluminescent responsive amine modified cadmium sulphide quantum dots. Anal Chem 88:9071–9078CrossRefGoogle Scholar
  97. 97.
    Shamsipur M, Molaei K, Molaabasi F, Hosseinkhani S, Alizadeh N, Alipour M, Moassess S (2018) One-step synthesis and characterization of highly luminescent nitrogen and phosphorus co-doped carbon dots and their application as highly selective and sensitive nanoprobes for low level detection of uranyl ion in hair and water samples and application to cellular imaging. Sens Actuators B-Chem 257:772–782CrossRefGoogle Scholar
  98. 98.
    Wang L, Yang Z, Gao J, Xu K, Gu H, Zhang B, Zhang X, Xu B (2006) A biocompatible method of decorporation: bisphosphonate-modified magnetite nanoparticles to remove uranyl ions from blood. J Am Chem Soc 128:13358–13359CrossRefGoogle Scholar
  99. 99.
    Zeynali H, Motaghedifard MH, Costa BFO, Akbari H, Moghadam Z, Babaeianfar M, Rashidi MJ (2017) Design and development a novel uranyl sensor based on FePt/ZnIn2S4 core-shell semiconductor nanostructures. Arab J Chem.  https://doi.org/10.1016/j.arabjc.2017.11.014
  100. 100.
    Ziółkowski R, Górski Ł, Malinowska E (2017) Carboxylated graphene as a sensing material for electrochemicaluranyl ion detection. Sens Actuators B-Chem 238:540–547CrossRefGoogle Scholar
  101. 101.
    Li Z, Chen F, Yuan L, Liu Y, Zhao Y, Chai Z, Shi W (2012) Uranium(VI) adsorption on graphene oxide nanosheets from aqueous solutions. Chem Eng J 210:539–546CrossRefGoogle Scholar
  102. 102.
    Shamsipur M, Farzin L, Tabrizi MA, Shanehsaz M (2016) CdTe amplification nanoplatforms capped with thioglycolic acid for electrochemical aptasensing of ultra-traces of ATP. Mater Sci Eng C 69:1354–1360CrossRefGoogle Scholar
  103. 103.
    Yáñez-Sedeño P, Campuzano S, Pingarrón JM (2017) Carbon nanostructures for tagging in electrochemical biosensing: a review. J Carbon Res 3:1–30CrossRefGoogle Scholar
  104. 104.
    Şinoforoğlu M, Gür B, Arık M, Onganer Y, Meral K (2013) Graphene oxide sheets as a template for dye assembly: graphene oxide sheets induce H-aggregates of pyronin (Y) dye. RSC Adv 3:11832–11838CrossRefGoogle Scholar
  105. 105.
    Ding Y, Zhang X, Liu X, Guo R (2006) Adsorption characteristics of thionine on gold nanoparticles. Langmuir 22:2292–2298CrossRefGoogle Scholar
  106. 106.
    Valipour A, Roushani M (2017) TiO2 nanoparticles doped with Celestine blue as a label in a sandwich immunoassay for the hepatitis C virus core antigen using a screen printed electrode. Microchim Acta 184:2015–2022CrossRefGoogle Scholar
  107. 107.
    Zhang JJ, Cheng FF, Li JJ, Zhu JJ, Lu Y (2016) Fluorescent nanoprobes for sensing and imaging of metal ions: recent advances and future perspectives. Nano Today 11:309–329PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Biju V, Itoh T, Ishikawa M (2010) Delivering quantum dots to cells: bioconjugated quantum dots for targeted and nonspecific extracellular and intracellular imaging. Chem Soc Rev 39:3031–3056CrossRefGoogle Scholar
  109. 109.
    Swierczewska M, Lee S, Chen X (2011) The design and application of fluorophore-gold nanoparticle activatable probes. Phys Chem Chem Phys 13:9929–9941PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Du J, Xia Z (2012) Interactions of gold nanoparticles and lysozyme by fluorescence quenching method. J Anal Lett 45:2236–2245CrossRefGoogle Scholar
  111. 111.
    Mayilo S, Kloster MA, Wunderlich M, Lutich A, Klar TA, Nichtl A, Kurzinger K, Stefani FD, Feldmann J (2009) Long-range fluorescence quenching by gold nanoparticles in a sandwich immunoassay for cardiac troponin T. Nano Lett 9:4558–4563CrossRefGoogle Scholar
  112. 112.
    Shi J, Chan C, Pang Y, Ye W, Tian F, Kyu J, Zhang Y, Yang M (2015) A fluorescence resonance energy transfer (FRET) biosensor based on graphene quantum dots (GQDs) and gold nanoparticles (AuNPs) for the detection of mecA gene sequence of Staphylococcus aureus. Biosens Bioelectron 67:595–600CrossRefGoogle Scholar
  113. 113.
    Kasry A, Ardakani AA, Tulevski GS, Menges B, Copel M, Vyklicky L (2012) Highly efficient fluorescence quenching with graphene. J Phys Chem C 116:2858–2862CrossRefGoogle Scholar
  114. 114.
    Zhu Z, Yang R, You M, Zhang X, Wu Y, Tan W (2010) Single-walled carbon nanotube as an effective quencher. Anal Bioanal Chem 396:73–83CrossRefGoogle Scholar
  115. 115.
    Yang R, Jin J, Chen Y, Shao N, Kang H, Xiao Z, Tang Z, Wu Y, Zhu Z, Tan W (2008) Carbon nanotube-quenched fluorescent oligonucleotides: probes that fluoresce upon hybridization. J Am Chem Soc 130:8351–8358CrossRefGoogle Scholar
  116. 116.
    Ahmad A, Kurkina T, Kern K, Balasubramanian K (2009) Applications of the static quenching of rhodamine B by carbon nanotubes. ChemPhysChem 10:2251–2255CrossRefGoogle Scholar
  117. 117.
    Castillo JJ, Cano H (2017) Study of the fluorescence quenching of 1-hydroxypyrene-3,6,8-trisulfonic acid by single-walled carbon nanotubes. Univ Sci 22:201–214CrossRefGoogle Scholar
  118. 118.
    Olson J, Dominguez-Medina S, Hoggard A, Wang LY, Chang WS, Link S (2015) Optical characterization of single plasmonic nanoparticles. Chem Soc Rev 44:40–57CrossRefGoogle Scholar
  119. 119.
    Motl NE, Smith AF, DeSantisa CJ, Skrabalak SE (2014) Engineering plasmonic metal colloids through composition and structural design. Chem Soc Rev 43:3823–3834CrossRefGoogle Scholar
  120. 120.
    Liu G, Zhang R, Huang X, Li L, Liu N, Wang J, Xu D (2018) Visual and colorimetric sensing of metsulfuron-methyl by exploiting hydrogen bond-induced anti-aggregation of gold nanoparticles in the presence of melamine. Sensors 18:1595CrossRefGoogle Scholar
  121. 121.
    Rex M, Hernandez FE, Campiglia AD (2006) Pushing the limits of mercury sensors with gold nanorods. Anal Chem 78:445–451CrossRefGoogle Scholar
  122. 122.
    Navarro JRG, Werts MHV (2013) Resonant light scattering spectroscopy of gold, silver and gold-silver alloy nanoparticles and optical detection in microfuidic channels. Analyst 138:583–592CrossRefGoogle Scholar
  123. 123.
    Shang L, Chen H, Deng L, Dong S (2008) Enhanced resonance light scattering based on biocatalytic growth of gold nanoparticles for biosensors design. Biosens Bioelectron 23:1180–1184CrossRefGoogle Scholar
  124. 124.
    Sharma B, Frontiera R, Henry A, Ringe E, Van Duyne R (2010) SERS: materials, applications, and the future. Mater Today 15:16–25CrossRefGoogle Scholar
  125. 125.
    Goul R, Das S, Liu Q, Xin M, Lu R, Hui R, Wu JZ (2017) Quantitative analysis of surface enhanced Raman spectroscopy of rhodamine 6G using a composite graphene and plasmonic au nanoparticle substrate. Carbon 111:386–392CrossRefGoogle Scholar
  126. 126.
    Ling X, Xie LM, Fang Y, Xu H, Zhang HL, Kong J, Dresselhaus MS, Zhang J, Liu ZF (2010) Can graphene be used as a substrate for Raman enhancement? Nano Lett 10:553–561CrossRefGoogle Scholar
  127. 127.
    Xie L, Ling X, Fang Y, Zhang J, Liu ZJ (2009) Graphene as a substrate to suppress fluorescence in resonance Raman spectroscopy. Am Chem Soc 131:9890–9891CrossRefGoogle Scholar
  128. 128.
    Lin HL, Li ZH, Liu P, Song BB, Cai QY, Grimes CA (2016) Aminocalix[4]arene monolayers as magnetoelastic sensor sensing elements for selective detection benzo[a]pyrene. Anal Methods 8:912–918CrossRefGoogle Scholar
  129. 129.
    Jin Y, Huang Y, Zhao R (2013) Gold nanoparticle-sensitized quartz crystal microbalance sensor for rapid and highly selective determination of cu(II) ions. Analyst 138:5479–5485CrossRefGoogle Scholar
  130. 130.
    Wang J (1994) Decentralized electrochemical monitoring of trace metals: from disposable strips to remote electrodes. Plenary lecture Analyst 119:763–766CrossRefGoogle Scholar
  131. 131.
    Ali TA, Mohamed GG, Aglan RF, Mourad MA (2018) A novel screen-printed and carbon paste electrodes for potentiometric determination of uranyl(II) ion in spiked water samples. Russ J Electrochem 54:201–215CrossRefGoogle Scholar
  132. 132.
    Zidan WI, Badr HAI, Akl ZF (2015) Development of potentiometric sensors for the selective determination of UO2 2+ ions. J Radioanal Nucl Chem 303:469–477CrossRefGoogle Scholar
  133. 133.
    Badr IHA, Zidan WI, Akl ZF (2014) Cyanex based uranyl sensitive polymeric membrane electrodes. Talanta 118:147–155CrossRefGoogle Scholar
  134. 134.
    Afkhami A, Shirzadmehr A, Madrakian T, Bagheri H (2015) New nano-composite potentiometric sensor composed of graphene nanosheets/thionine/molecular wire for nanomolar detection of silver ion in various real samples. Talanta 131:548–555CrossRefGoogle Scholar
  135. 135.
    Li F, Ye J, Zhou M, Gan S, Zhang Q, Han D, Niu L (2012) All-solid-state potassium-selective electrode using graphene as the solid contact. Analyst 137:618–623CrossRefGoogle Scholar
  136. 136.
    Abu-Dalo MA, Al-Rawashdeh NAF, Al-Mheidat IR, Nassory NS (2016) Preparation and evaluation of new uranyl imprinted polymerelectrode sensor for uranyl ion based on uranyl–carboxybezotriazolecomplex in pvc matrix membrane. Sens Actuators B-Chem 227:336–345CrossRefGoogle Scholar
  137. 137.
    Metilda P, Prasad K, Kala R, Gladis JM, Rao TP, Naidu GRK (2007) Ion imprinted polymer based sensor for monitoring toxic uranium in environmental samples. Anal Chim Acta 582:147–153CrossRefGoogle Scholar
  138. 138.
    Guney S, Guney O (2016) A novel electrochemical sensor for selective determination of uranylion based on imprinted polymer sol–gel modified carbon pasteelectrode. Sens Actuators B-Chem 231:45–53CrossRefGoogle Scholar
  139. 139.
    Wen Y, Yuan Y, Li L, Ma D, Liao Q, Hou S (2017) Ultrasensitive DNAzyme based amperometric determination of uranyl ion using mesoporous silica nanoparticles loaded with methylene blue. Microchim Acta 184:3909–3917CrossRefGoogle Scholar
  140. 140.
    Bojdi MK, Behbahani M, Najafi M, Bagheri A, Omidi F, Salimi S (2015) Selective and sensitive determination of uranyl ions in complex matrices by ion imprinted polymers-based electrochemical sensor. Electroanalysis 27:2458–2467CrossRefGoogle Scholar
  141. 141.
    Ghoreishi SM, Behpour M, Mazaheri S, Naeimi H (2012) Uranyl sensor based on a N,N'-bis(salicylidene)-2-hydroxyphenylmethanediamine and multiwall carbon nanotube electrode. J Radioanal Nucl Chem 293: 201–210CrossRefGoogle Scholar
  142. 142.
    Golikand AN, Asgari M, Maragheh MG, Lohrasbi E (2009) Carbon nanotube-modified glassy carbon electrode for anodic stripping voltammetric detection of uranyle. J Appl Electrochem 39:65–70CrossRefGoogle Scholar
  143. 143.
    Parnian MJ, Rowshanzamir S, Moghaddam JA (2018) Investigation of physicochemical and electrochemical properties of recast Nafion nanocomposite membranes using different loading of zirconia nanoparticles for proton exchange membrane fuel cell applications. Mater Sci Energy Technol 1:146–154Google Scholar
  144. 144.
    Lederer FL, Weinert U, Gunther TJ, Raff J, Weiß S, Pollmann K (2013) Identification of multiple putative S-layer genespartly expressed by Lysinibacillus sphaericus JG-B53. Microbiology 159:1097–1108CrossRefGoogle Scholar
  145. 145.
    Sabela M, Balme S, Bechelany M, Janot JM, Bisetty K (2017) A review of gold and silver nanoparticle-based colorimetric sensing assays. Adv Eng Mater 19:1–24CrossRefGoogle Scholar
  146. 146.
    Xiao-Ming MA, Mi S, Yue L, Yin-Jin L, Fang L, Long-Hua G, Bin Q, Zhen-Yu L, Guo-Nan C (2018) Progress of visual biosensor based on gold nanoparticles. Chin J Anal Chem 46:1–10CrossRefGoogle Scholar
  147. 147.
    Huang Y, Fang L, Zhu Z, Ma Y, Zhou L, Chen X, Xu D, Yang C (2016) Design and synthesis of target-responsive hydrogel for portable visual quantitative detection of uranium with a microfluidic distance-based readout device. Biosens Bioelectron 85:496–502CrossRefGoogle Scholar
  148. 148.
    Cao XH, Zhang HY, Ma RC, Yang Q, Zhang ZB, Liu YH (2015) Visual colorimetric detection of UO2 2+ using o-phosphorylethanolamine-functionalized gold nanoparticles. Sens Actuators B-Chem 218:67–72CrossRefGoogle Scholar
  149. 149.
    Chai F, Wang C, Wang T, Li L, Su Z (2010) Colorimetric detection of Pb2+ using glutathione functionalized gold nanoparticles. ACS Appl Mater Interfaces 2:1466–1470CrossRefGoogle Scholar
  150. 150.
    Luo Y, Zhang Y, Xu L, Wang L, Wen G, Liang A, Jiang Z (2012) Colorimetric sensing of trace UO2 2+ by using nanogold-seeded nucleation amplification and label-free DNAzyme cleavage reaction. Analyst 137:1866–1871CrossRefGoogle Scholar
  151. 151.
    Lin C, Zhang Y, Zhou X, Yao B, Fang Q (2013) Naked-eye detection of nucleic acids through rolling circle amplification and magnetic particle mediated aggregation. Biosens Bioelectron 47:515–519CrossRefGoogle Scholar
  152. 152.
    Zhang H, Lin L, Zeng X, Ruan Y, Wu Y, Lin M, He Y, Fu F (2016) Magnetic beads-based DNAzyme recognition and AuNPs-based enzymatic catalysis amplification for visual detection of trace uranyl ion in aqueous environment. Biosens Bioelectron 78:73–79CrossRefGoogle Scholar
  153. 153.
    Zhang D, Chen Z, Omar H, Deng L, Khashab NM (2015) Colorimetric peroxidase mimetic assay for uranyl detection in sea water. ACS Appl Mater Interfaces 7:4589–4594CrossRefGoogle Scholar
  154. 154.
    Cheng X, Yu X, Chen L, Zhang H, Wu Y, Fu FF (2017) Visual detection of ultra-trace levels of uranyl ions using magnetic bead-based DNAzyme recognition in combination with rolling circle amplification. Microchim Acta 184:4259–4267CrossRefGoogle Scholar
  155. 155.
    Behbahani M, Salimi S, Abandansari HS, Omidi F, Salarian M, Esrafili A (2015) Application of a tailor-made polymer as a selective and sensitive colorimetric sensor for reliable detection of trace levels of uranyl ions in complex matrices. RSC Adv 5:59912–59920CrossRefGoogle Scholar
  156. 156.
    Ng SM, Koneswaran M, Narayanaswamy R (2016) A review on fluorescent inorganic nanoparticles for optical sensing applications. RSC Adv 6:21624–21661CrossRefGoogle Scholar
  157. 157.
    Chen X, Zhang K, Yu H, Yu L, Ge H, Yue J, Hou T, Asiri AM, Marwani HM, Wang S (2018) Sensitive and selective fluorescence detection of aqueous uranyl ions using water-soluble CdTe quantum dots. J Radioanal Nucl Chem 316:1011–1019CrossRefGoogle Scholar
  158. 158.
    Hua M, Yang S, Ma J, He W, Kuang L, Hua D (2018) Highly selective and sensitive determination of uranyl ion by the probe of CdTe quantum dot with a specific size. Talanta 190:278–283CrossRefGoogle Scholar
  159. 159.
    Zhang H, Ruan Y, Lin L, Lin M, Zeng X, Xi Z, Fu FF (2015) A turn-off fluorescent biosensor for the rapid and sensitive detection of uranyl ion based on molybdenum disulfide nanosheets and specific DNAzyme. Spectrochim Acta A 146:1–6CrossRefGoogle Scholar
  160. 160.
    Zhou B, Shi LF, Wang YS, Yang HX, Xue JH. Liu L, Wang YS, Yin JC, Wang JC (2013) Resonance light scattering determination of uranyl based on labeled DNAzyme-gold nanoparticle system. Spectrochim Acta A 110: 419–424CrossRefGoogle Scholar
  161. 161.
    Jiang Z, Zhang Y, Liang A, Chen C, Tian J, Li T (2012) Free-labeled nanogold catalytic detection of trace UO2 2+ based on the aptamer reaction and gold particle resonance scattering effect. Plasmonics 7:185–190CrossRefGoogle Scholar
  162. 162.
    Jiang J, Ma L, Chen J, Zhang P, Wu H, Zhang Z, Wang S, Yun W, Li Y, Jia J, Liao J (2017) SERS detection and characterization of uranyl ion sorption on silver nanorods wrapped with Al2O3 layers. Microchim Acta 184:2775–2782CrossRefGoogle Scholar
  163. 163.
    Jiang Z, Yao D, Wen G, Li T, Chen B, Liang A (2013) A label-free nanogold DNAzyme-cleaved surface-enhanced resonance Raman scattering method for trace UO2 2+ using rhodamine 6G as probe. Plasmonics 8:803–810CrossRefGoogle Scholar
  164. 164.
    Dutta S, Ray C, Sarkar S, Pradhan M, Negishi Y, Pal T (2013) Silver nanoparticle decorated reduced graphene oxide (rGO) nanosheet: a platform for SERS based low-level detection of uranyl ion. ACS Appl Mater Interfaces 5:8724–8732CrossRefGoogle Scholar
  165. 165.
    Leverette CL, Villa-Aleman E, Jokela S, Zhang Z, Liu Y, Zhao Y, Smith SA (2009) Trace detection and differentiation of uranyl(VI) ion cast films utilizing aligned ag nanorod SERS substrates. Vib Spectrosc 50:143–151CrossRefGoogle Scholar
  166. 166.
    Gao F, Zhang R, Feng X, Liu S, Ding R, Kishor R, Qiu L, Zheng Y (2017) Phase-domain photoacoustic sensing. Appl Phys Lett 110:1–5Google Scholar
  167. 167.
    Ho IT, Sessler JL, Gambhir SS, Jokerst JV (2015) Parts per billion detection of uranium with a porphyrinoid-containing nanoparticle and in vivo photoacoustic imaging. Analyst 140:3731–3737PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Cui Y (2017) Wireless bological electronic sensors. Sensors 17:2289CrossRefGoogle Scholar
  169. 169.
    Yin JC, Wang YS, Zhou B, Xiao XL, Xue JH, Wang JC, Wang YS, Qian QM (2013) A wireless magnetoelastic sensor for uranyl using DNAzyme-graphene oxide and gold nanoparticles-based amplification. Sens Actuators B-Chem 188:147–155CrossRefGoogle Scholar
  170. 170.
    Miranda OR, Dollahon NR, Ahmadi TS (2006) Critical concentrations and role ofascorbic acid (vitamin C) in the crystallization of gold nanorods within hex-adecyltrimethyl ammonium bromide (CTAB)/tetraoctyl ammonium bromide (TOAB) micelles. Cryst Growth Des 6:2747–2753CrossRefGoogle Scholar
  171. 171.
    Chen X, Mei Q, Yu L, Ge H, Yue J, Zhang K, Hayat T, Alsaedi A, Wang S (2018) Rapid and on-site detection of uranyl ions via ratiometric fluorescence signals based on a smartphone platform. ACS Appl Mater Interfaces 10:42225–42232CrossRefGoogle Scholar
  172. 172.
    Dena ASA, Bayoumi EE (2018) Lab-on-paper optical sensor for smartphone-based quantitative estimation of uranyl ions. J Radioanal Nucl Chem 318:1439–1445CrossRefGoogle Scholar
  173. 173.
    Srinivasan B, Tung S (2015) Development and applications of portable biosensors. J Lab Autom 20:365–389CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Radiation Application Research SchoolNuclear Science and Technology Research InstituteTehranIran
  2. 2.Department of ChemistryRazi UniversityKermanshahIran

Personalised recommendations