Advertisement

Microchimica Acta

, 186:281 | Cite as

A turn-on fluorescent sulfide probe prepared from carbon dots and MnO2 nanosheets

  • Jinshui LiuEmail author
  • Chenfu Liu
  • Zihan Zhou
Original Paper
  • 141 Downloads

Abstract

A turn-on fluorescent sulfide probe was prepared from carbon dots (CDs; synthesized using an environmentally friendly method) and MnO2 nanosheets. In this composite probe, the fluorescence of the CDs (with excitation/emission peaks at 330/430 nm) is quenched by the MnO2 nanosheets through an inner filter effect. Introducing sulfide causes the MnO2 nanosheets to be disintegrated through a redox reaction between sulfide and MnO2. Hence, the blue fluorescence of the CDs is restored. Under the optimum conditions, fluorescence increases linearly in the 2–25 μM sulfide concentration range. The detection limit is 0.8 μM. The method was used to analyze spiked real water samples, and satisfactory results were achieved.

Graphical abstract

Schematic of the detecting sulfide ions using the carbon dots/MnO2 fluorescence probe based on the recovery of carbon dot fluorescence when sulfide ions are added.

Keywords

Fluorescence quenching Sulfide probe Nanomaterial Inner filter effect Redox reaction 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21205002, 21762004) and the Natural Science Foundation of Anhui Province, China (1708085 MB48).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3413_MOESM1_ESM.doc (322 kb)
ESM 1 (DOC 322 kb)

References

  1. 1.
    Li K-B, Jia W-P, Han D-M, Liang D-X, He X-P, Chen G-R (2017) Fluorogenic bis-triazolyl galactoprobe–metal complex for full-aqueous analysis of sulfide ion. Sensors Actuators B Chem 246:197–201CrossRefGoogle Scholar
  2. 2.
    Ko C-N, Yang C, Lin S, Li S, Dong Z, Liu J, Lee SM-Y, Leung C-H, Ma D-L (2017) A long-lived phosphorescence iridium(III) complex as a switch on-off-on probe for live zebrafish monitoring of endogenous sulfide generation. Biosens Bioelectron 94:575–583CrossRefGoogle Scholar
  3. 3.
    Zeng J, Li M, Liu A, Feng F, Zeng T, Duan W, Li M, Gong M, Wen C-Y, Yin Y (2018) Au/AgI Dimeric nanoparticles for highly selective and sensitive colorimetric detection of hydrogen sulfide. Adv Funct Mater 28(26):1800515CrossRefGoogle Scholar
  4. 4.
    Shanmugaraj K, Ilanchelian M (2016) Colorimetric determination of sulfide using chitosan-capped silver nanoparticles. Microchim Acta 183(5):1721–1728CrossRefGoogle Scholar
  5. 5.
    Lee D-Y, Huang W-C, Gu T-J, Chang G-D (2018) Quantitative and comparative liquid chromatography-electrospray ionization-mass spectrometry analyses of hydrogen sulfide and thiol metabolites derivaitized with 2-iodoacetanilide isotopologues. J Chromatogr A 1552:43–52CrossRefGoogle Scholar
  6. 6.
    Nechaeva D, Shishov A, Ermakov S, Bulatov A (2018) A paper-based analytical device for the determination of hydrogen sulfide in fuel oils based on headspace liquid-phase microextraction and cyclic voltammetry. Talanta 183:290–296CrossRefGoogle Scholar
  7. 7.
    Ni P, Chen C, Jiang Y, Zhao Z, Lu Y (2018) Fluorometric determination of sulfide ions via its inhibitory effect on the oxidation of thiamine by Cu(II) ions. Microchim Acta 185(8):362CrossRefGoogle Scholar
  8. 8.
    Butwong N, Srijaranai S, Luong JHT (2016) Fluorometric determination of hydrogen sulfide via silver-doped CdS quantum dots in solution and in a test strip. Microchim Acta 183(3):1243–1249CrossRefGoogle Scholar
  9. 9.
    Song Z-L, Dai X, Li M, Teng H, Song Z, Xie D, Luo X (2018) Biodegradable nanoprobe based on MnO2 nanoflowers and graphene quantum dots for near infrared fluorescence imaging of glutathione in living cells. Microchim Acta 185(10):485CrossRefGoogle Scholar
  10. 10.
    Yang W, Ni J, Luo F, Weng W, Wei Q, Lin Z, Chen G (2017) Cationic carbon dots for modification-free detection of Hyaluronidase via an electrostatic-controlled Ratiometric fluorescence assay. Anal Chem 89(16):8384–8390CrossRefGoogle Scholar
  11. 11.
    Feng X, Ashley J, Zhou T, Sun Y (2018) Fluorometric determination of doxycycline based on the use of carbon quantum dots incorporated into a molecularly imprinted polymer. Microchim Acta 185(11)Google Scholar
  12. 12.
    Mohammadi S, Salimi A (2018) Fluorometric determination of microRNA-155 in cancer cells based on carbon dots and MnO 2 nanosheets as a donor-acceptor pair. Microchim Acta 185(8):372CrossRefGoogle Scholar
  13. 13.
    Hua J, Jiao Y, Wang M, Yang Y (2018) Determination of norfloxacin or ciprofloxacin by carbon dots fluorescence enhancement using magnetic nanoparticles as adsorbent. Microchim Acta 185(2):137CrossRefGoogle Scholar
  14. 14.
    Liu J, Wang L, Bao H (2019) A novel fluorescent probe for ascorbic acid based on seed-mediated growth of silver nanoparticles quenching of carbon dots fluorescence. Anal Bioanal Chem 411(4):877–883CrossRefGoogle Scholar
  15. 15.
    He D, Yang X, He X, Wang K, Yang X, He X, Zou Z (2015) A sensitive turn-on fluorescent probe for intracellular imaging of glutathione using single-layer MnO2 nanosheet-quenched fluorescent carbon quantum dots. Chem Commun 51(79):14764–14767CrossRefGoogle Scholar
  16. 16.
    Meng H-M, Zhang X-B, Yang C, Kuai H, Mao G-J, Gong L, Zhang W, Feng S, Chang J (2016) Efficient two-photon fluorescence Nanoprobe for turn-on detection and imaging of ascorbic acid in living cells and tissues. Anal Chem 88(11):6057–6063CrossRefGoogle Scholar
  17. 17.
    Amjadi M, Hallaj T, Kouhi Z (2018) An enzyme-free fluorescent probe based on carbon dots – MnO 2 nanosheets for determination of uric acid. J Photochem Photobiol A Chem 356:603–609CrossRefGoogle Scholar
  18. 18.
    He X, Yang X, Hai L, He D, He X, Wang K, Yang X (2016) Single-layer MnO2 nanosheet quenched fluorescence ruthenium complexes for sensitive detection of ferrous iron. RSC Adv 6(82):79204–79208CrossRefGoogle Scholar
  19. 19.
    Shangguan J, Huang J, He D, He X, Wang K, Ye R, Yang X, Qing T, Tang J (2017) Highly Fe3+-selective fluorescent Nanoprobe based on Ultrabright N/P Codoped carbon dots and its application in biological samples. Anal Chem 89(14):7477–7484CrossRefGoogle Scholar
  20. 20.
    Liang Q, Wang Y, Lin F, Jiang M, Li P, Huang B (2017) A facile microwave-hydrothermal synthesis of fluorescent carbon quantum dots from bamboo tar and their application. Anal Methods 9(24):3675–3681CrossRefGoogle Scholar
  21. 21.
    Hu Y, Zhang L, Geng X, Ge J, Liu H, Li Z (2017) A rapid and sensitive turn-on fluorescent probe for ascorbic acid detection based on carbon dots–MnO2 nanocomposites. Anal Methods 9(38):5653–5658CrossRefGoogle Scholar
  22. 22.
    Gong X, Zhang Q, Gao Y, Shuang S, Choi MMF, Dong C (2016) Phosphorus and nitrogen dual-doped hollow carbon dot as a Nanocarrier for doxorubicin delivery and biological imaging. ACS Appl Mater Interfaces 8(18):11288–11297CrossRefGoogle Scholar
  23. 23.
    Zhai W, Wang C, Yu P, Wang Y, Mao L (2014) Single-layer MnO2 Nanosheets suppressed fluorescence of 7-Hydroxycoumarin: mechanistic study and application for sensitive sensing of ascorbic acid in vivo. Anal Chem 86(24):12206–12213CrossRefGoogle Scholar
  24. 24.
    Liu J, Liu G, Liu W, Wang Y (2015) Turn-on fluorescence sensor for the detection of heparin based on rhodamine B-modified polyethyleneimine–graphene oxide complex. Biosens Bioelectron 64:300–305CrossRefGoogle Scholar
  25. 25.
    Deng J, Lu D, Zhang X, Shi G, Zhou T (2017) Highly sensitive GQDs-MnO2 based assay with turn-on fluorescence for monitoring cerebrospinal acetylcholinesterase fluctuation: a biomarker for organophosphorus pesticides poisoning and management. Environ Pollut 224:436–444CrossRefGoogle Scholar
  26. 26.
    Böttcher ME, Bo T (2001) Anaerobic sulfide oxidation and stable isotope fractionation associated with bacterial sulfur disproportionation in the presence of MnO 2. Geochim Cosmochim Acta 65(10):1573–1581CrossRefGoogle Scholar
  27. 27.
    Liu J, Bao H, Ma D-L, Leung C-H (2018) Silver nanoclusters functionalized with Ce(III) ions are a viable “turn-on-off” fluorescent probe for sulfide. Microchim Acta 186(1):16CrossRefGoogle Scholar
  28. 28.
    Jung JM, Kang JH, Han J, Lee H, Lim MH, Kim K-T, Kim C (2018) A novel “off-on” type fluorescent chemosensor for detection of Zn 2+ and its zinc complex for “on-off” fluorescent sensing of sulfide in aqueous solution, in vitro and in vivo. Sensors Actuators B Chem 267:58–69CrossRefGoogle Scholar
  29. 29.
    Shalini Devi KS, Senthil Kumar A (2018) A blood-serum sulfide selective electrochemical sensor based on a 9,10-phenanthrenequinone-tethered graphene oxide modified electrode. Analyst 143(13):3114–3123CrossRefGoogle Scholar
  30. 30.
    Liu Z, Ma H, Sun H, Gao R, Liu H, Wang X, Xu P, Xun L (2017) Nanoporous gold-based microbial biosensor for direct determination of sulfide. Biosens Bioelectron 98:29–35CrossRefGoogle Scholar
  31. 31.
    Peng S, Zhong T, Guo T, Shu D, Meng D, Liu H, Guo D (2018) A novel fluorescent probe for selective detection of hydrogen sulfide in living cells. New J Chem 42(7):5185–5192CrossRefGoogle Scholar
  32. 32.
    Lee J, Lee YJ, Ahn YJ, Choi S, Lee G-J (2018) A simple and facile paper-based colorimetric assay for detection of free hydrogen sulfide in prostate cancer cells. Sensors Actuators B Chem 256:828–834CrossRefGoogle Scholar
  33. 33.
    Yang G, Zhang J, Zhu S, Wang Y, Feng X, Yan M, Yu J (2018) Fast response and highly selective detection of hydrogen sulfide with a ratiometric two-photon fluorescent probe and its application for bioimaging. Sensors Actuator B Chem 261:51–57CrossRefGoogle Scholar
  34. 34.
    Wang L, Chen G, Zeng G, Liang J, Dong H, Yan M, Li Z, Guo Z, Tao W, Peng L (2015) Fluorescent sensing of sulfide ions based on papain-directed gold nanoclusters. New J Chem 39(12):9306–9312CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Chemistry and Materials Science, Anhui Key Laboratory of Chemo/Biosensing, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-based MaterialsAnhui Normal UniversityWuhuPeople’s Republic of China
  2. 2.School of Pharmaceutical SciencesGannan Medical UniversityGanzhouPeople’s Republic of China

Personalised recommendations