Advertisement

Microchimica Acta

, 186:276 | Cite as

Nitrogen-doped graphene quantum dots coated with gold nanoparticles for electrochemiluminescent glucose detection using enzymatically generated hydrogen peroxide as a quencher

  • Peiyao Ran
  • Jinyi Song
  • Fangjing Mo
  • Jingling Wu
  • Pingkun Liu
  • Yingzi FuEmail author
Original Paper
  • 79 Downloads

Abstract

Nitrogen-doped graphene quantum dots (N-GQDs) were prepared from dicyandiamide and then used as both an electrochemiluminescence (ECL) emitter and a reductant to produce gold nanoparticles (Au-N-GQDs) on their surface without using any reagent. In order to avoid resonance energy transfer, the Au-N-GQDs were stabilized with chitosan. Transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), UV-vis spectroscopy (UV-vis) and ECL methods were used to characterize the nanocomposite. The materials was placed on a glassy carbon electrode (GCE), and the ECL signals are found to be strongly quenched by hydrogen peroxide that is enzymatically produced by oxidation of glucose. With the applied typical potential of −1.7 V, the ECL of the Au-N-GQDs modified GCE decreases linearly in the 10 nM to 5.0 μM glucose concentration range, and the lower detection limit is 3.3 nM. The influence of H2O2 to the signal has been discussed and a possible mechanism has been presented.

Graphical abstract

Schematic presentation of the reduction of gold nanoparticles with nitrogen-droped graphene quantum dots (N-GQDs) to form Au-N-GQDs. They were used to detect glucose by electrochemiluminescence through a signal off strategy.

Keywords

Doping heteroatoms Signal off Quench mechanism Chitosan Peroxydisulfate In situ reduction Metal complex Glassy carbon electrode Electrochemiluminescence 

Notes

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No. 21272188).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

References

  1. 1.
    Miao WJ (2008) Electrogenerated chemiluminescence and its biorelated applications. Chem Rev 108:2506–2553CrossRefGoogle Scholar
  2. 2.
    Liu Z, Qi W, Xu G (2015) Recent advances in electrochemiluminescence. Chem Soc Rev 44:3117–3142CrossRefGoogle Scholar
  3. 3.
    Li L, Chen Y, Zhu JJ (2017) Recent advances in electrochemiluminescence analysis. Anal Chem 89:358–371CrossRefGoogle Scholar
  4. 4.
    Hu L, Xu G (2010) Applications and trends in electrochemiluminescence. Chem Soc Rev 39:3275–3304CrossRefGoogle Scholar
  5. 5.
    Richter MM (2004) Electrochemiluminescence. Chem Rev 104:3003–3036CrossRefGoogle Scholar
  6. 6.
    Deng SY, Ju HX (2013) Electrogenerated chemiluminescence of nanomaterials for bioanalysis. Analyst 138:43–61CrossRefGoogle Scholar
  7. 7.
    Yan Y T, Liu Q, Dong X Y, Hao N, Chen S B, You T Y, Mao H P, Wang K (2016) Copper(I) oxide nanospheres decorated with graphene quantum dots display improved electrocatalytic activity for enhanced luminol electrochemiluminescence. Microchim Acta 183:1591–1599CrossRefGoogle Scholar
  8. 8.
    Zhu S, Lin X, Ran PY (2017) A glassy carbon electrode modified C-dots and silver nanoparticles for enzymatic electrochemiluminescent detection of glutamate enantiomers. Microchim Acta 184:4679–4684CrossRefGoogle Scholar
  9. 9.
    Liu Y, Zhao Y, Fan Q, Khan MS, Li X, Zhang Y, Ma H, Wei Q (2018) Aptamer based electrochemiluminescent thrombin assay using carbon dots anchored onto silver-decorated polydopamine nanospheres. Microchim Acta 185:85CrossRefGoogle Scholar
  10. 10.
    Khonsari YN, Sun S (2018) Electrochemiluminescent aptasensor for thrombin using nitrogen-doped graphene quantum dots. Microchim Acta 185:430CrossRefGoogle Scholar
  11. 11.
    Cao HX, Wang L, Pan CG, He YS, Liang GX (2018) Aptamer based electrochemiluminescent determination of bisphenol A by using carboxylated graphitic carbon nitride. Microchim Acta 185:463CrossRefGoogle Scholar
  12. 12.
    Chen W, Yao X, Zhou X, Zhao K, Deng A, Li J (2018) Electrochemiluminescence based competitive immunoassay for Sudan I by using gold-functionalized graphitic carbon nitride and Au/Cu alloy nanoflowers. Microchim Acta 185:275CrossRefGoogle Scholar
  13. 13.
    Kroto HW, Heath JR, O'Brien SC, Curl RF, Smalley RE (1985) C60: Buckminsterfullerene. Nature 318:162–163CrossRefGoogle Scholar
  14. 14.
    Ajayan PM, Ebbesen TW, Ichihashi T, Iijima S (1991) Opening carbon nanotubes with oxygen and implications for filling. Nature 354:56–58CrossRefGoogle Scholar
  15. 15.
    Braun T, Schubert AP, Kostoff RN (2000) Growth and trends of fullerene research as reflected in its journal literature. Chem Rev 100:23–37CrossRefGoogle Scholar
  16. 16.
    Hu L, D. Hecht S, Gruner G (2010) Carbon nanotube thin films: fabrication, properties, and applications. Chem Rev 110: 5790–5844CrossRefGoogle Scholar
  17. 17.
    Xu YH, Liu JQ, Gao CL, Wang EK (2014) Applications of carbon quantum dots in electrochemiluminescence: a mini review. Electrochem Commun 48:151–154CrossRefGoogle Scholar
  18. 18.
    Chizari K, Janowska I, Houlle M, Florea I, Ersen O, Romero T, Bernhardt P, Ledoux MJ, Pham-Huu C (2010) Tuning of nitrogen-doped carbon nanotubes as catalyst support for liquid-phase reaction. Appl Catal 380:72–80CrossRefGoogle Scholar
  19. 19.
    Wu L, Wang JS, Ren JS, Li W, Qu XG (2013) Highly sensitive electrochemiluminescencet cytosensing using carbon nanodot@Ag hybrid material and graghene for dual signal amplification. Chem Commun 49:5675CrossRefGoogle Scholar
  20. 20.
    Liang RP, Qiu WB, Zhao HF, Xiang CY, Qiu JD (2016) Electrochemiluminescence resonance energy transfer between graghene quantum dots and graphene oxide for sensitive protein kinase activity and inhibitor sensing. Anal Chim Acta 904:58–64CrossRefGoogle Scholar
  21. 21.
    Maogen Z, Smith A (2004) Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes. Anal Chem 76:5045–5050CrossRefGoogle Scholar
  22. 22.
    Qian ZS, Shan XY, Chai LJ, Ma JJ, Chen JR, Feng H (2014) DNA nanosensor based on biocompatible graphene quantum dots and carbon nanotubes. Biosens Bioelectron 60:64–70CrossRefGoogle Scholar
  23. 23.
    Wei WL, Xu C, Ren JS, Xu BL, Qu XG (2012) Sensing metal ions with ion selectivity of a crown ether and fluorescence resonance energy transfer between carbon dots and graphene. Chem Commun 48:1284–1286CrossRefGoogle Scholar
  24. 24.
    Morales-Narvaez E, Perez-Lopez B, Pires LB, Merkoci A (2012) Simple Forster resonance energy transfer evidence for the ultrahigh quantum dot quenching efficiency by graphene oxide compared to other carbon structures. Carbon 50:2987–2993CrossRefGoogle Scholar
  25. 25.
    Liu CC, Sheng YJ, Sun YH, Feng JK, Wang SJ, Zhang J, Xu JC, Jiang DZ (2015) A glucose oxidase-coupled DNAzyme sensor for glucose detection in tears and saliva. Biosens Bioelectron 70:455–461CrossRefGoogle Scholar
  26. 26.
    Kajisa T, Sakata T (2017) Glucose-responsive hydrogel electrode for biocompatible glucose transistor. Sci Technol Adv Mater 18:26–33CrossRefGoogle Scholar
  27. 27.
    Feng J, Siu VS, Roelke A, Mehta V, Rhieu SY, Palmore TR, Pacifici D (2012) Nanoscale plasmonic interferometers for multispectral, high-throughput biochemical sensing. Nano Lett 12:602–609CrossRefGoogle Scholar
  28. 28.
    Ju J, Chen W (2015) In situ growth of surfactant- free gold nanoparticles on nitrogen-dopped graphene quantum dots for electrochemical detection of hydrogen peroxide in biological environments. Anal Chem 87:1903–1910CrossRefGoogle Scholar
  29. 29.
    Ju J, Chen W (2014) Synthesis of highly fluorescent nitrogen-doped graphene quantum dots for sensitive, label-ftee detection of Fe (III) in aqueous media. Biosens Bioelectron 58:219–225CrossRefGoogle Scholar
  30. 30.
    Dong YQ, Shao JW, Chen CQ, Li H, Wang RX, Chi YW, Lin XM, Chen GN (2012) Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon 50:4738–4743CrossRefGoogle Scholar
  31. 31.
    Cai ZY, Xiong ZG, Lu XM, Teng J (2014) In situ gold-loaded titania photonic crystals with enhanced photocatalytic activity. J Mater Chem A 2:545–553CrossRefGoogle Scholar
  32. 32.
    Lystvet SM, Volden S, Singh G, Yasuda M, Halskau O, Glomm WR (2013) Tunable photophysical properties, conformation and function of nanosized protein-gold constructs. RSC Adv 3:482–495CrossRefGoogle Scholar
  33. 33.
    Li LL, Liu KP, Yang GH, Wang CM, Zhang JR, Zhu JJ (2011) Fabrication of graphene-quantum dots composites for sensitive electrogenerated chemiluminescence immunosensing. Adv Funct Mater 21:869–878CrossRefGoogle Scholar
  34. 34.
    Dong Y, Tian W, Ren S, Dai R, Chi Y, Chen G (2014) Graphene quantum dots/L-cysteine coreactant electrochemiluminescence system and its application in sensing lead (II) ions. ACS Appl Mater Interfaces 6:1646–1651CrossRefGoogle Scholar
  35. 35.
    Dong Y, Dai R, Dong T, Chi Y, Chen G (2014) Photoluminescence, chemiluminescence and anodic electrochemiluminscence of hydrazide-modified graphene quantum dots. Nanoscale 6:11240–11245CrossRefGoogle Scholar
  36. 36.
    Wang ZX, Zheng CL, Li QL, Ding SN (2014) Electrochemiluminescence of a nanoAg-carbon nanodot composite and its application to detect sulfide ions. Analyst 139:1751–1755CrossRefGoogle Scholar
  37. 37.
    Tian KL, Nie F, Luo K, Zheng XH, Zheng JB (2017) A sensitive electrochemiluminescence glucose biosensor based on graphene quantum dot prepared from graphene oxide sheets and hydrogen peroxide. J Electroanal Chem 801:162–170CrossRefGoogle Scholar
  38. 38.
    Zhou C, Chen YM, You X, Dong YQ, Chi YW (2017) An electrochemiluminescent biosensor based on interactions between a graphene quantum dot-sulfite co-reactant system and hydrogen peroxide. ChemElectroChem 4:1783–1789CrossRefGoogle Scholar
  39. 39.
    Carrara S, Arcudi F, Prato M, Cola LD (2017) Amine-rich nitrogen-dopped carbon nanodots as a platform for self-enhancing electrochemiluminescence. Angew Chem Int Ed 129:4835–4839CrossRefGoogle Scholar
  40. 40.
    Zhang P, Zhuo Y, Chang YY, Yuan R, Chai YQ (2015) Electrochemiluminescent graphene quantum dots as a sensing platform: a dual amplification for microRNA assay. Anal Chem 87:10385–10391CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Peiyao Ran
    • 1
  • Jinyi Song
    • 1
  • Fangjing Mo
    • 1
  • Jingling Wu
    • 1
  • Pingkun Liu
    • 1
  • Yingzi Fu
    • 1
    Email author
  1. 1.Key Laboratory of Luminescence and Real-Time Analysis (Southwest University), Ministry of Education, School of Chemistry and Chemical EngineeringSouthwest UniversityChongqingChina

Personalised recommendations