Advertisement

Microchimica Acta

, 186:290 | Cite as

A fluorometric assay for oxytetracycline based on the use of its europium(III) complex and aptamer-modified silver nanoparticles

  • Masoomeh Esmaelpourfarkhani
  • Khalil AbnousEmail author
  • Seyed Mohammad TaghdisiEmail author
  • Mahmoud ChamsazEmail author
Original Paper
  • 71 Downloads

Abstract

An ultrasensitive assay is described for the determination of oxytetracycline (OTC) at nanomolar levels. The method is using silver nanoparticles (AgNPs) that were first modified with OTC-binding aptamer and then exposed to the OTC-Eu(III) complex. The pink fluorescence of the OTC-Eu(III) complex on the AgNPs is almost completely quenched. On addition of OTC, it will compete with the OTC-Eu(III) complex for binding to the aptamer on the AgNPs. The OTC-Eu(III) complex is released and becomes strongly fluorescent, with excitation/emission peaks at 385/620 nm. The resulting assay was validated in terms of linearity and linear range, sensitivity, selectivity, detection limit and accuracy. Under optimum conditions, response is linear in the 10 to 500 nM OTC concentration range, and the limit of detection is 1.9 nM. The method was applied to the determination of OTC in spiked milk and tablets samples, and it gave satisfactory results.

Graphical abstract

Schematic presentation of the assay. In the presence of oxytetracycline (OTC), it will compete with the OTC-europium(III) complex for binding to the silver nanoparticles (AgNPs)-aptamer conjugate. The OTC-Eu(III) complex is released and strong pink fluorescence is observed.

Keywords

Antibiotic OTC-Eu3+ complex Recovery assay Fluorescence quenching method Triton X-100 Milk analysis 

Notes

Acknowledgments

Financial support of this study was provided by the Mashhad University of Medical Sciences (grant number: 951099) and the Ferdowsi University of Mashhad (grant number: 3/42232).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3389_MOESM1_ESM.doc (326 kb)
ESM 1 (DOC 325 kb)

References

  1. 1.
    Anadón A, Rodriguez J, Fernández C, Carbonell G, Pro J (2016) Oxytetracycline effects in aquatic and terrestrial biotic systems. Toxicol Lett 258:S226–S227CrossRefGoogle Scholar
  2. 2.
    Cinquina A, Longo F, Anastasi G, Giannetti L, Cozzani R (2003) Validation of a high-performance liquid chromatography method for the determination of oxytetracycline, tetracycline, chlortetracycline and doxycycline in bovine milk and muscle. J Chromatogr A 987(1–2):227–233CrossRefGoogle Scholar
  3. 3.
    Muriuki F, Ogara W, Njeruh F, Mitema E (2001) Tetracycline residue levels in cattle meat from Nairobi salughter house in. J Vet Sci 2(2):97–101CrossRefGoogle Scholar
  4. 4.
    Pena A, Lino C, Silveira I (1999) Determination of oxytetracycline, tetracycline, and chlortetracycline in milk by liquid chromatography with postcolumn derivatization and fluorescence detection. J AOAC Int 82(1):55–60PubMedGoogle Scholar
  5. 5.
    Tolls J (2001) Sorption of veterinary pharmaceuticals in soils: a review. Environmental science & technology 35(17):3397–3406CrossRefGoogle Scholar
  6. 6.
    Abnous K, Danesh NM, Emrani AS, Ramezani M, Taghdisi SM (2016) A novel fluorescent aptasensor based on silica nanoparticles, PicoGreen and exonuclease III as a signal amplification method for ultrasensitive detection of myoglobin. Anal Chim Acta 917:71–78CrossRefGoogle Scholar
  7. 7.
    Pang Y, Rong Z, Wang J, Xiao R, Wang S (2015) A fluorescent aptasensor for H5N1 influenza virus detection based-on the core–shell nanoparticles metal-enhanced fluorescence (MEF). Biosens Bioelectron 66:527–532CrossRefGoogle Scholar
  8. 8.
    Demarçay E (1901) Sur un nouvel élément l’europium. C R Acad Sci 132:1484–1486Google Scholar
  9. 9.
    Liawruangrath S, Sakulkhaemaruethai S (2003) Flow injection spectrophotometric determination of europium using chlortetracycline. Talanta 59(1):9–18CrossRefGoogle Scholar
  10. 10.
    Binnemans K (2015) Interpretation of europium (III) spectra. Coord Chem Rev 295:1–45CrossRefGoogle Scholar
  11. 11.
    Jansen T, Jüstel T, Kirm M, Mägi H, Nagirnyi V, Tõldsepp E, Vielhauer S, Khaidukov N, Makhov V (2017) Site selective, time and temperature dependent spectroscopy of Eu3+ doped apatites (Mg, Ca, Sr) 2Y8Si6O26. J Lumin 186:205–211CrossRefGoogle Scholar
  12. 12.
    Bardajee GR, Hooshyar Z, Khanjari M (2014) Dye fluorescence quenching by newly synthesized silver nanoparticles. J Photochem Photobiol A Chem 276:113–121CrossRefGoogle Scholar
  13. 13.
    Mokashi VV, Gore AH, Sudarsan V, Rath MC, Han SH, Patil SR, Kolekar GB (2012) Evaluation of interparticle interaction between colloidal ag nanoparticles coated with trisodium citrate and safranine by using FRET: spectroscopic and mechanistic approach. J Photochem Photobiol B Biol 113:63–69CrossRefGoogle Scholar
  14. 14.
    Yun C, Javier A, Jennings T, Fisher M, Hira S, Peterson S, Hopkins B, Reich N, Strouse G (2005) Nanometal surface energy transfer in optical rulers, breaking the FRET barrier. J Am Chem Soc 127(9):3115–3119CrossRefGoogle Scholar
  15. 15.
    Taghdisi SM, Danesh NM, Lavaee P, Ramezani M, Abnous K (2016) An electrochemical aptasensor based on gold nanoparticles, thionine and hairpin structure of complementary strand of aptamer for ultrasensitive detection of lead. Sensors Actuators B Chem 234:462–469CrossRefGoogle Scholar
  16. 16.
    Tan B, Zhao H, Du L, Gan X, Quan X (2016) A versatile fluorescent biosensor based on target-responsive graphene oxide hydrogel for antibiotic detection. Biosens Bioelectron 83:267–273CrossRefGoogle Scholar
  17. 17.
    Taghdisi SM, Danesh NM, Lavaee P, Emrani AS, Ramezani M, Abnous K (2015) A novel colorimetric triple-helix molecular switch aptasensor based on peroxidase-like activity of gold nanoparticles for ultrasensitive detection of lead (II). RSC Adv 5(54):43508–43514CrossRefGoogle Scholar
  18. 18.
    Xu W, Wang Y, Liu S, Yu J, Wang H, Huang J (2014) A novel sandwich-type electrochemical aptasensor for sensitive detection of kanamycin based on GR–PANI and PAMAM–Au nanocomposites. New J Chem 38(10):4931–4937CrossRefGoogle Scholar
  19. 19.
    Georgieva I, Trendafilova N, Zahariev T, Danchova N, Gutzov S (2018) Theoretical insight in highly luminescent properties of Eu (III) complex with phenanthroline. J Lumin 202:192–205CrossRefGoogle Scholar
  20. 20.
    Li M, Selvin PR (1997) Amine-reactive forms of a luminescent diethylenetriaminepentaacetic acid chelate of terbium and europium: attachment to DNA and energy transfer measurements. Bioconjug Chem 8(2):127–132CrossRefGoogle Scholar
  21. 21.
    Liu L, Chen G, Fishman ML (2005) A single sorbent for tetracycline enrichment and subsequent solid-matrix time-resolved luminescence. Anal Chim Acta 528(2):261–268CrossRefGoogle Scholar
  22. 22.
    Liu S, Wang Y, Xu W, Leng X, Wang H, Guo Y, Huang J (2017) A novel sandwich-type electrochemical aptasensor based on GR-3D Au and aptamer-AuNPs-HRP for sensitive detection of oxytetracycline. Biosens Bioelectron 88:181–187CrossRefGoogle Scholar
  23. 23.
    Mulfinger L, Solomon SD, Bahadory M, Jeyarajasingam AV, Rutkowsky SA, Boritz C (2007) Synthesis and study of silver nanoparticles. J Chem Educ 84(2):322CrossRefGoogle Scholar
  24. 24.
    Ibañez GA (2008) Partial least-squares analysis of time decay data for Eu (III)–tetracycline complexes: simultaneous luminescent determination of tetracycline and oxytetracycline in bovine serum. Talanta 75(4):1028–1034CrossRefGoogle Scholar
  25. 25.
    Izquierdo P, Gomez-Hens A, Perez-Bendito D (1994) Study of the Eu (III)—tetracycline—thenoyltrifluoroacetone system by using the stopped-flow mixing technique: determination of tetracycline in serum. Anal Chim Acta 292(1–2):133–139CrossRefGoogle Scholar
  26. 26.
    Hou H, Bai X, Xing C, Gu N, Zhang B, Tang J (2013) Aptamer-based cantilever array sensors for oxytetracycline detection. Anal Chem 85(4):2010–2014CrossRefGoogle Scholar
  27. 27.
    Babaei M, Jalalian SH, Bakhtiari H, Ramezani M, Abnous K, Taghdisi SM (2017) Aptamer-based fluorescent switch for sensitive detection of oxytetracycline. Aust J Chem 70(6):718–723CrossRefGoogle Scholar
  28. 28.
    Zheng D, Zhu X, Zhu X, Bo B, Yin Y, Li G (2013) An electrochemical biosensor for the direct detection of oxytetracycline in mouse blood serum and urine. Analyst 138(6):1886–1890CrossRefGoogle Scholar
  29. 29.
    Kim C-H, Lee L-P, Min J-R, Lim M-W, Jeong S-H (2014) An indirect competitive assay-based aptasensor for detection of oxytetracycline in milk. Biosens Bioelectron 51:426–430CrossRefGoogle Scholar
  30. 30.
    Yan K, Liu Y, Yang Y, Zhang J (2015) A cathodic “signal-off” photoelectrochemical aptasensor for ultrasensitive and selective detection of oxytetracycline. Anal Chem 87(24):12215–12220CrossRefGoogle Scholar
  31. 31.
    Sun J, Gan T, Zhu H, Shi Z, Liu Y (2014) Direct electrochemical sensing for oxytetracycline in food using a zinc cation-exchanged montmorillonite. Appl Clay Sci 101:598–603CrossRefGoogle Scholar
  32. 32.
    Imani-Nabiyyi A, Sorouraddin MH, Amjadi M, Naseri A (2014) Luminol/CdTe quantum dots/sodium periodate system in conjunction with response-surface methodology for chemiluminometric determination of some tetracyclines. J Lumin 151:57–65CrossRefGoogle Scholar
  33. 33.
    Meng F, Ma X, Duan N, Wu S, Xia Y, Wang Z, Xu B (2017) Ultrasensitive SERS aptasensor for the detection of oxytetracycline based on a gold-enhanced nano-assembly. Talanta 165:412–418CrossRefGoogle Scholar
  34. 34.
    Xu Y, Lu C, Sun Y, Shao Y, Cai Y, Zhang Y, Miao J, Miao P (2018) A colorimetric aptasensor for the antibiotics oxytetracycline and kanamycin based on the use of magnetic beads and gold nanoparticles. Microchim Acta 185(12):548CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of SciencesFerdowsi University of MashhadMashhadIran
  2. 2.Pharmaceutical Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
  3. 3.Department of Medicinal Chemistry, School of PharmacyMashhad University of Medical SciencesMashhadIran
  4. 4.Targeted Drug Delivery Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
  5. 5.Department of Pharmaceutical Biotechnology, School of PharmacyMashhad University of Medical SciencesMashhadIran

Personalised recommendations