Advertisement

Microchimica Acta

, 186:293 | Cite as

Fluorescent C-NanoDots for rapid detection of BRCA1, CFTR and MRP3 gene mutations

  • Tania García-Mendiola
  • Cristina Garcia Elosegui
  • Iria Bravo
  • Félix Pariente
  • Alejandra Jacobo-Martin
  • Cristina Navio
  • Isabel Rodriguez
  • Reinhold Wannemacher
  • Encarnación LorenzoEmail author
Original Paper

Abstract

The authors report on a fluorometric method for the rapid detection of BRCA1, CFRT and MRP3 gene mutations. These are associated with breast cancer, cystic fibrosis and autoimmune hepatitis diseases, respectively. Carbon nanodots with blue fluorescence (with excitation/emission maxima at 340/440 nm) were synthesized and characterized, and their interactions with DNA were investigated. Changes in the fluorescence intensity following interaction with ssDNA and dsDNA were used for specific DNA sequence of BRCA1, CFRT and MRP3 genes detection. The response to DNAs is linear up to 200 nM and the detection limit is 270 pM. The assay selectivity allows the detection of single gene mutations. Under optimum conditions, the assay can rapidly discriminate between wild type and mutated samples.

Graphical abstract

Schematic representation of fluorescence assay for rapid detection of gene mutation based on fluorescent carbon nanodots.

Keywords

Rapid assay Cancer Fluorescent carbon nanodots DNA sensing Mutations Genetic diseases Fluorescent assay 

Notes

Acknowledgements

CAM projects: TRANSNANOAVANSENS-CM (S2018/NMT-4349) and MAD2D-CM Program. MEIC projects: CTQ2017-84309-C2-1-R and MAT2015-71879-P. We thank the Confocal Microscopy and Flow Cytometry Services of CBMSO.

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3386_MOESM1_ESM.docx (4.4 mb)
ESM 1 (DOCX 4518 kb)

References

  1. 1.
    Cattrall RW (1997) Chemical sensors, chemistry primers. Oxford University Press, OxfordGoogle Scholar
  2. 2.
    Mickelsen SR (1996) Electrochemical biosensors for DNA sequence detection. Electroanalysis 8:15–19CrossRefGoogle Scholar
  3. 3.
    Palecek E, Fojta M, Tomschik M, Wang J (1998) Electrochemical biosensors for DNA hybridization and DNA damage. Biosens Bioelectron 13:621–628CrossRefGoogle Scholar
  4. 4.
    Wang J (2006) Electrochemical biosensors: towards point-of-care cancer diagnostics. Biosens Bioelectron 21:1887–1892CrossRefGoogle Scholar
  5. 5.
    Miao P, Liu L, Nie YJ, Li GX (2009) An electrochemical sensing strategy for ultrasensitive detection of glutathione by using two gold electrodes and two complementary oligonucleotides. Biosens Bioelectron 24:3347–3351CrossRefGoogle Scholar
  6. 6.
    Wan Y, Zhang J, Liu G, Pan D, Wang LH, Song SP, Fan CH (2009) Ligase-based multiple DNA analysis by using an electrochemical sensor array. Biosens Bioelectron 24:1209–1212CrossRefGoogle Scholar
  7. 7.
    Ma H, Li Z, Xue N, Cheng Z, Miao X (2018) A gold nanoparticle based fluorescent probe for simultaneous recognition of single-stranded DNA and double-stranded DNA. Microchim Acta 185:93CrossRefGoogle Scholar
  8. 8.
    Qian ZS, Shan XY, Chai LJ, Ma JJ, Chen JR, Feng H (2014) A universal fluorescence sensing strategy based on biocompatible graphene quantum dots and graphene oxide for the detection of DNA. Nanoscale 6:5671–5674CrossRefGoogle Scholar
  9. 9.
    Li HT, Kang ZH, Liu Y, Lee ST (2012) Carbon nanodots: synthesis, properties and applications. J Mater Chem 22:24230–24253CrossRefGoogle Scholar
  10. 10.
    Zhong D, Zhuo Y, Feng YJ, Yang XM (2015) Employing carbon dots modified with vancomycin for assaying Gram-positive bacteria like Staphylococcus aureus. Biosens Bioelectron 74:546–553CrossRefGoogle Scholar
  11. 11.
    García-Mendiola T, Bravo I, López-Moreno JM, Pariente F, Wannemacher R, Weber K, Popp J, Lorenzo E (2018) Carbon nanodots based biosensors for gene mutation detection. Sens Actuators B: Chem 256:226–233CrossRefGoogle Scholar
  12. 12.
    D'Andrea E, Marzuillo C, De Vito C, Di Marco M, Pitini E, Vacchio MR, Villari P (2016) Which BRCA genetic testing programs are ready for implementation in health care? A systematic review of economic evaluations. Genet Med 18:1171–1180CrossRefGoogle Scholar
  13. 13.
    Marmur J (1961) Procedure for isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218CrossRefGoogle Scholar
  14. 14.
    Doty P, Rice SA (1955) The denaturation of Desoxypentose nucleic acid. Biochim Biophys Acta 16:446–448CrossRefGoogle Scholar
  15. 15.
    Horcas I, Fernández R, Gómez-Rodríguez JM, Colchero J, Gómez-Herrero J, Baro AM (2007) WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev Sci Instrum 78:013705CrossRefGoogle Scholar
  16. 16.
    Baker SN, Baker GA (2010) Luminescent carbon Nanodots: emergent Nanolights. Angew Chem Int Ed 49:6726–6744CrossRefGoogle Scholar
  17. 17.
    Shen JH, Zhu YH, Yang XL, Li CZ (2012) Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem Commun 48:3686–3699CrossRefGoogle Scholar
  18. 18.
    Zhang ZP, Zhang J, Chen N, Qu LT (2012) Graphene quantum dots: an emerging material for energy-related applications and beyond. Energy Environ Sci 5:8869–8890CrossRefGoogle Scholar
  19. 19.
    Zhu SJ, Tang SJ, Zhang JH, Yang B (2012) Control the size and surface chemistry of graphene for the rising fluorescent materials. Chem Commun 48:4527–4539CrossRefGoogle Scholar
  20. 20.
    Cao L, Meziani MJ, Sahu S, Sun YP (2013) Photoluminescence properties of graphene versus other carbon nanomaterials. Acc Chem Res 46:171–180CrossRefGoogle Scholar
  21. 21.
    Li LL, Wu GH, Yang GH, Peng J, Zhao JW, Zhu JJ (2013) Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale 5:4015–4039CrossRefGoogle Scholar
  22. 22.
    Li LL, Ji J, Fei R, Wang CZ, Lu Q, Zhang JR, Jiang LP, Zhu JJ (2012) A facile microwave avenue to electrochemiluminescent two-color graphene quantum dots. Adv Funct Mater 22:2971–2979CrossRefGoogle Scholar
  23. 23.
    Wang YF, Hu AG (2014) Carbon quantum dots: synthesis, properties and applications. J Mater Chem C 2:6921–6939CrossRefGoogle Scholar
  24. 24.
    Chen L, Han HY (2014) Recent advances in the use of near-infrared quantum dots as optical probes for bioanalytical, imaging and solar cell application. Microchim Acta 181:1485–1495CrossRefGoogle Scholar
  25. 25.
    Borghei Y, Hosseini M, Ganjali MR (2017) Detection of large deletion in human BRCA1 gene in human breast carcinoma MCF-7 cells by using DNA-silver nanoclusters. Methods Appl Fluoresc 6:015001CrossRefGoogle Scholar
  26. 26.
    He H, Chan DS, Leung C, Ma D (2012) A highly selective G-quadruplex-based luminescent switch-on probe for the detection of gene deletion. Chem Commun 48:9462–9464CrossRefGoogle Scholar
  27. 27.
    Zhu SJ, Meng QN, Wang L, Zhang JH, Song YB, Jin H, Zhang K, Sun HC, Wang HY, Yang B (2013) Highly Photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew Chem Int Ed 52:3953–3957CrossRefGoogle Scholar
  28. 28.
    Wen Z, Yin X (2016) Excitation-independent carbon dots, from photoluminescence mechanism to single-color application. RSC Adv 6:27829–27835CrossRefGoogle Scholar
  29. 29.
    Mergny JL, Duval-Valentin G, Nguyen CH, Perrouault L, Faucon B, Rougée M, Montenay-Garestier T, Bisagni E, Hélène C (1992) Triple Helix-specific ligands. Science 256:1681–1684CrossRefGoogle Scholar
  30. 30.
    Kumar CV, Turner RS, Asuncion EH (1993) Groove binding of a styrylcyanine dye to the DNA double helix: the salt effect. J Photochem Photobiol A Chem 74:231–238CrossRefGoogle Scholar
  31. 31.
    Cosa G, Focsaneanu KS, McLean JRN, McNamee JP, Scaiano JC (2001) Photophysical properties of fluorescent DNA-dyes bound to single- and double-stranded DNA in aqueous buffered solution. Photochem Photobiol 73:585–599CrossRefGoogle Scholar
  32. 32.
    Heli H, Moosavi-Movahedi AA, Jabbari A, Ahmad F (2007) An electrochemical study of safranin O binding to DNA at the surface. J Solid State Electrochem 11:593–599CrossRefGoogle Scholar
  33. 33.
    Lakowicz JR (2006) Principles of fluorescence spectroscopy. Springer Science+Business Media, New YorkCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Tania García-Mendiola
    • 1
    • 2
  • Cristina Garcia Elosegui
    • 1
  • Iria Bravo
    • 1
    • 2
  • Félix Pariente
    • 1
    • 2
  • Alejandra Jacobo-Martin
    • 2
  • Cristina Navio
    • 2
  • Isabel Rodriguez
    • 2
  • Reinhold Wannemacher
    • 2
  • Encarnación Lorenzo
    • 1
    • 2
    Email author
  1. 1.Analytical Chemistry Department, Institute for Advanced Research in Chemical Sciences (IAdChem)Universidad Autónoma de MadridMadridSpain
  2. 2.Instituto Madrileño de Estudios Avanzados (IMDEA) NanocienciaMadridSpain

Personalised recommendations