Advertisement

Microchimica Acta

, 186:285 | Cite as

Functionalization of a carbon nanofiber with a tetrasulfonatophenyl ruthenium(II)porphine complex for real-time amperometric sensing of chlorpromazine

  • Rajalakshmi Sakthivel
  • Subbiramaniyan Kubendhiran
  • Shen-Ming ChenEmail author
Original Paper
  • 143 Downloads

Abstract

A carbon nanofiber functionalized with ruthenium(II)-tetrasulfonato phenyl porphine (CNF/Ru-TSPP) is shown to be viable sensor for amperometric determination of the antipsychotic drug chlorpromazine (CPZ). The hollow platelet structured Ru-TSPP combines with the hollow cylindrical tube-like structure of the CNF via π stacking interaction. The morphological and electro conductive properties of the electrode were characterized by spectrophotometric techniques. The CNF/Ru-TSPP modified electrode displays a large surface-to-volume ratio, good electron transport and good electrocatalytic activity. The amperometric sensor, typically operated at a potential 0.63 V (vs. Ag/AgCl) exhibits a linear response in the 0.6 nM to 1.1 mM CPZ concentration range, has a 0.2 nM detection limit, and a remarkably good electrochemical sensitivity (2.405 μA μM−1 cm−2). The sensor is selective, repeatable and reproducible. It was successfully applied to the determination of CPZ in spiked serum samples.

Graphical abstract

Schematic presentation of carbon nanofiber/ tetrasulfonatophenyl Ruthenium(II)porphine (CNF/Ru-TSPP) nanocomposite synthesis and application for the electrochemical determination of chlorpromazine (CPZ).

Keywords

Chlorpromazine hydrochloride Hollow-platelet Supramolecular interaction Electro-catalytic activity Amperometry 

Notes

Acknowledgements

This project was supported by the Ministry of Science and Technology (MOST 107-2113-M- 027-005-MY3), Taiwan, ROC.

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3384_MOESM1_ESM.docx (1.2 mb)
ESM 1 (DOCX 1.24 mb)

References

  1. 1.
    Beitollahi H, Ivari S-G, Torkzadeh-Mahani M (2018) Application of antibody–nanogold–ionic liquid–carbon paste electrode for sensitive electrochemical immunoassay of thyroid-stimulating hormone. Biosens Bioelectron 110:97–102PubMedCrossRefGoogle Scholar
  2. 2.
    Unnikrishnan B, Hsu P-C, Chen S-M (2012) A multipurpose voltammetric sensor for the determination of chlorpromazine in presence of acetaminophen, uric acid, dopamine and ascorbic acid. Int J Electrochem Sci 7:11414–11425Google Scholar
  3. 3.
    Mokhtari A, Rezaei B (2011) Chemiluminescence determination of chlorpromazine and fluphenazine in pharmaceuticals and human serum using tris (1, 10-phenanthroline) ruthenium (II). Anal Meth 3(4):996–1002CrossRefGoogle Scholar
  4. 4.
    Mohammadi S-Z, Sarhadi A-H, Mosazadeh F (2018) Screen-printed electrode modified with magnetic Core-shell nanoparticles for detection of chlorpromazine. Anal Bioanal Chem Res 5(2):363–372Google Scholar
  5. 5.
    Parvin M-H (2011) Graphene paste electrode for detection of chlorpromazine. Electrochem Commun 13(4):366–369CrossRefGoogle Scholar
  6. 6.
    Dermiş S, Biryol İ (1989) Voltammetric determination of chlorpromazine hydrochloride. Analyst 114(4):525–526PubMedCrossRefGoogle Scholar
  7. 7.
    Purushothama H-T, Nayaka Y-A, Vinay M-M, Manjunatha P, Yathisha R-O, Basavarajappa K-V (2018) Pencil graphite electrode as an electrochemical sensor for the voltammetric determination of chlorpromazine. J Sci: Adv Mater Devices 3(2):161–166Google Scholar
  8. 8.
    Petković B-B, Kuzmanović D, Dimitrijević T, Krstić M-P, Stanković D-M (2017) Novel strategy for electroanalytical detection of antipsychotic drugs chlorpromazine and thioridazine; possibilities for simultaneous determination. Int J Electrochem Sci 12:3709–3720CrossRefGoogle Scholar
  9. 9.
    Sanghavi B-J, Wolfbeis O-S, Hirsch T, Swami N-S (2015) Nanomaterial-based electrochemical sensing of neurological drugs and neurotransmitters. Microchim Acta 182:1–41CrossRefGoogle Scholar
  10. 10.
    Parvin M-H, Golivand M-B, Najafi M, Shariaty S-M (2012) Carbon paste electrode modified with cobalt nanoparticles and its application to the electrocatalytic determination of chlorpromazine. J Electroanal Chem 683:31–36CrossRefGoogle Scholar
  11. 11.
    Zimova N, Němec I, Zima J (1986) Determination of chlorpromazine and thioridazine by differential pulse voltammetry in acetonitrile medium. Talanta 33(6):467–470PubMedCrossRefGoogle Scholar
  12. 12.
    Charisiadis A, Stangel C, Nikolaou V, Roy M-S, Sharma G-DCA-G (2015) A supramolecular assembling of zinc porphyrin with a π-conjugated oligo (phenylenevinylene)(oPPV) molecular wire for dye sensitized solar cell. RSC Adv 5(107):88508–88519CrossRefGoogle Scholar
  13. 13.
    Sales M-G-F, Tomás J-F, Lavandeira S-R (2006) Flow injection potentiometric determination of chlorpromazine. J Pharm Biomed Anal 41(4):1280–1286PubMedCrossRefGoogle Scholar
  14. 14.
    Magno L-N, Bezerra F-C, Freire L-E-S, Guerra R-A, Bakuzis A-F, Gonçalves P-J (2017) Use of spectroscopic techniques for evaluating the coupling of porphyrins on biocompatible nanoparticles. A potential system for photodynamics, theranostics, and nanodrug delivery applications. J Phys Chem A 121(9):1924–1931PubMedCrossRefGoogle Scholar
  15. 15.
    Liao W-M, Zhang J-H, Hou Y-J, Wang H-P, Pan M (2016) Visible-light-driven CO2 photo-catalytic reduction of Ru (II) and Ir (III) coordination complexes. Inorg Chem Commun 73:80–89CrossRefGoogle Scholar
  16. 16.
    Rushi A, Datta K, Ghosh P, Mulchandani A, Shirsat M-D (2013) Iron tetraphenyl porphyrin functionalized single wall carbon nanotubes for the detection of benzene. Mat Lett 96:38–41CrossRefGoogle Scholar
  17. 17.
    Kim S-U, Lee K-H (2004) Carbon nanofiber composites for the electrodes of electrochemical capacitors. Chem Phys Lett 400(1–3):253–257CrossRefGoogle Scholar
  18. 18.
    Yang T, Du M, Zhu H, Zhang M, Zou M (2015) Immobilization of Pt nanoparticles in carbon nanofibers: bifunctional catalyst for hydrogen evolution and electrochemical sensor. Electrochim Acta 167:48–54CrossRefGoogle Scholar
  19. 19.
    Nigović B, Jurić S, Mornar A (2018) Electrochemical determination of nepafenac topically applied nonsteroidal anti-inflammatory drug using graphene nanoplatelets-carbon nanofibers modified glassy carbon electrode. J Electroanal Chem 817:30–35CrossRefGoogle Scholar
  20. 20.
    Kubendhiran S, Sakthinathan S, Chen S-M, Tamizhdurai P, Shanthi K, Chelladurai K (2017) Green reduction of reduced graphene oxide with nickel tetraphenyl porphyrin nanocomposite modified electrode for enhanced electrochemical determination of environmentally pollutant nitrobenzene. J Colloid Interface Sci 497:207–216PubMedCrossRefGoogle Scholar
  21. 21.
    Lu Q, Zhang Y, Liu S (2015) Graphene quantum dots enhanced photocatalytic activity of zinc porphyrin toward the degradation of methylene blue under visible-light irradiation. J Mater Chem 3(16):8552–8558CrossRefGoogle Scholar
  22. 22.
    Kumar S, Rath T, Mahaling R-N, Das C-K (2007) Processing and characterization of carbon nanofiber/syndiotactic polystyrene composites in the absence and presence of liquid crystalline polymer. Compos Part A 38(5):1304–1317CrossRefGoogle Scholar
  23. 23.
    Peshoria S, Narula A-K (2018) Structural, morphological and electrochemical properties of a polypyrrole nanohybrid produced by template-assisted fabrication. J Mater Sci 53(5):3876–3888CrossRefGoogle Scholar
  24. 24.
    Sekhon S-S, Park J-S, Cho E, Yoon Y-G, Kim C-S, Lee W-Y (2009) Morphology studies of high temperature proton conducting membranes containing hydrophilic/hydrophobic ionic liquids. Macromolecules 42(6):2054–2062CrossRefGoogle Scholar
  25. 25.
    Aydin M (2013) DFT and Raman spectroscopy of porphyrin derivatives: Tetraphenylporphine (TPP). DFT Vib Spectrosc 68:141–152CrossRefGoogle Scholar
  26. 26.
    Zardi P, Gallo E, Solan G-A, Hudson A-J (2016) Resonance Raman spectroscopy as an in situ probe for monitoring catalytic events in a Ru–porphyrin mediated amination reaction. Analyst 141(10):3050–3058PubMedCrossRefGoogle Scholar
  27. 27.
    Sakthivel R, Mutharani B, Chen S-M, Kubendhiran S, Chen T-W, Al-Hemaid F-M, Ali M-A, Elshikh M-S (2018) A simple and rapid electrochemical determination of L-tryptophan based on functionalized carbon black/poly-L-histidine nanocomposite. J Electrochem Soc 165(10):B422–B430CrossRefGoogle Scholar
  28. 28.
    Ensafi A-A, Taei M, Khayamian T, Maleh H-K, Hasanpour F (2010) Voltammetric measurement of trace amount of glutathione using multiwall carbon nanotubes as a sensor and chlorpromazine as a mediator. J Solid State Electrochem 14:1415–1423CrossRefGoogle Scholar
  29. 29.
    Kumar J-V, Karthik R, Chen S-M, Kokulnathan T, Sakthinathan S, Muthuraj V, Chiu T-W, Chen T-W (2018) Highly selective electrochemical detection of antipsychotic drug chlorpromazine in drug and human urine samples based on peas-like strontium molybdate as an electrocatalyst. Inorg Chem Front 5(3):643–655CrossRefGoogle Scholar
  30. 30.
    Fotouhi L, Hashkavayi A-B, Heravi M-M (2013) Electrochemical behaviour and voltammetric determination of sulphadiazine using a multi-walled carbon nanotube composite film-glassy carbon electrode. J Exp Nanosci 8:947–956CrossRefGoogle Scholar
  31. 31.
    Ahmadzadeh S, Karimi F, Atar N, Sartori E-R, Mirzaei E-F, Afsharmanesh E (2017) Synthesis of CdO nanoparticles using direct chemical precipitation method: fabrication of novel voltammetric sensor for square wave voltammetry determination of chlorpromazine in pharmaceutical samples. Inorg Nano-Met 47(3):347–353CrossRefGoogle Scholar
  32. 32.
    Bouchta D, Izaoumen N, Zejli H, Kaoutit M-E, Temsamani K-R (2005) A novel electrochemical synthesis of poly-3-methylthiophene-γ-cyclodextrin film application for the analysis of chlorpromazine and some neurotransmitters. Biosens Bioelectron 20(11):2228–2235PubMedCrossRefGoogle Scholar
  33. 33.
    Hajian A, Rafati A-A, Afraz A, Najafi M (2014) Electrosynthesis of polythiophene nanowires and their application for sensing of chlorpromazine. J Electrochem Soc 161(9):B196–B200CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemical Engineering and BiotechnologyNational Taipei University of TechnologyTaipeiTaiwan, Republic of China
  2. 2.Genomics Research CenterAcademia SinicaTaipeiTaiwan
  3. 3.Department of ChemistryNational Taiwan UniversityTaipeiTaiwan

Personalised recommendations