Advertisement

Microchimica Acta

, 186:265 | Cite as

Enzyme-free electrocatalytic sensing of hydrogen peroxide using a glassy carbon electrode modified with cobalt nanoparticle-decorated tungsten carbide

  • Muthaiah Annalakshmi
  • Paramasivam Balasubramanian
  • Shen-Ming ChenEmail author
  • Tse-Wei Chen
Original Paper
  • 133 Downloads

Abstract

An efficient non-enzymatic electrochemical sensor for hydrogen peroxide (H2O2) was constructed by modifying a glassy carbon electrode (GCE) with a nanocomposite prepared from cobalt nanoparticle (CoNP) and tungsten carbide (WC). The nanocomposite was prepared at low temperature through a simple technique. Its crystal structure, surface morphology and elemental composition were investigated via X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy. The results showed the composite to be uniformly distributed and that the CoNP are well attached to the surface of the flake-like WC. Electrochemical studies show that the modified GCE has an improved electrocatalytic activity toward the reduction of H2O2. H2O2 can be selectively detected, best at a working voltage of −0.4 V (vs. Ag/AgCl), with a 6.3 nM detection limit over the wide linear range from 50 nM to 1.0 mM. This surpasses previously reported non-enzymatic H2O2 sensors. The sensor was successfully applied to the determination of H2O2 in contact lens solutions and in spiked serum samples.

Graphical abstract

Schematic presentation of a method for electrochemical sensing of hydrogen peroxide in real samples using cobalt nanoparticle decorated tungsten carbide (WCC) modified glassy carbon electrode (GCE).

Keywords

Reactive oxygen species (ROS) Non-enzymatic Electrochemical sensor Metal carbides Metal nanoparticle 

Notes

Acknowledgements

The authors gratefully acknowledge the financial support of the Ministry of Science and Technology, Taiwan through contract no. MOST 107-2113-M-027-005-MY3.

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3377_MOESM1_ESM.docx (318 kb)
ESM 1 (DOCX 317 kb)

References

  1. 1.
    Xie F, Cao X, Qu F, Asiri AM, Sun X (2018) Cobalt nitride nanowire array as an efficient electrochemical sensor for glucose and H2O2 detection. Sensors Actuators B Chem 255:1254–1261CrossRefGoogle Scholar
  2. 2.
    Ray C, Dutta S, Roy A, Sahoo R, Pal T (2016) Redox mediated synthesis of hierarchical Bi2O3/MnO2 nanoflowers: a non-enzymatic hydrogen peroxide electrochemical sensor. Dalton Trans 45:4780–4790CrossRefGoogle Scholar
  3. 3.
    Chen W, Cai S, Ren QQ, Wen W, Zhao YD (2012) Recent advances in electrochemical sensing for hydrogen peroxide: a review. Analyst 137:49–58CrossRefGoogle Scholar
  4. 4.
    Wang H, Wang H, Li T, Ma J, Li K, Zuo X (2017) Silver nanoparticles selectively deposited on graphene-colloidal carbon sphere composites and their application for hydrogen peroxide sensing. Sensors Actuators B Chem 239:1205–1212CrossRefGoogle Scholar
  5. 5.
    Vasuki K, Babu KJ, Sheet S, Siva G, Kim AR, Yoo DJ (2017) Amperometric hydrogen peroxide sensor based on the use of CoFe2O4 hollow nanostructures. Microchim Acta 184:2579–2586CrossRefGoogle Scholar
  6. 6.
    Jia N, Huang B, Chen L, Tan L, Yao S (2014) A simple non-enzymatic hydrogen peroxide sensor using gold nanoparticles-graphene-chitosan modified electrode. Sensors Actuators B Chem 195:165–170CrossRefGoogle Scholar
  7. 7.
    Kim JH, Patra CR, Arkalgud JR, Boghossian AA, Zhang J, Han JH, Reuel NF, Ahn JH, Mukhopadhyay D, Strano MS (2011) Single-molecule detection of H2O2 mediating angiogenic redox signaling on fluorescent single-walled carbon nanotube array. ACS Nano 5:7848–7857CrossRefGoogle Scholar
  8. 8.
    Yue HF, Bu X, Huang MH, Young J, Raglione T (2009) Quantitative determination of trace levels of hydrogen peroxide in crospovidone and a pharmaceutical product using high performance liquid chromatography with coulometric detection. Int J Pharm 375:33–40CrossRefGoogle Scholar
  9. 9.
    Matsubara C, Kawamoto N, Takamura K (1992) Oxo [5, 10, 15, 20-tetra (4-pyridyl) porphyrinato] titanium (IV): an ultra-high sensitivity spectrophotometric reagent for hydrogen peroxide. Analyst 117:1781–1784CrossRefGoogle Scholar
  10. 10.
    Hanaoka S, Lin JM, Yamada M (2001) Chemiluminescent flow sensor for H2O2 based on the decomposition of H2O2 catalyzed by cobalt (II)-ethanolamine complex immobilized on resin. Anal Chim Acta 426:57–64CrossRefGoogle Scholar
  11. 11.
    Zhao C, Zhang H, Zheng J (2017) A non-enzymatic electrochemical hydrogen peroxide sensor based on ag decorated boehmite nanotubes/reduced graphene oxide nanocomposites. J Electroanal Chem 784:55–61CrossRefGoogle Scholar
  12. 12.
    Liu H, Weng L, Yang C (2017) A review on nanomaterial-based electrochemical sensors for H2O2, H2S and NO inside cells or released by cells. Microchim Acta 184:1267–1283CrossRefGoogle Scholar
  13. 13.
    Liu W, Zhou Z, Yin L, Zhu Y, Zhao J, Zhu B, Zheng L, Jin Q, Wang L (2018) A novel self-powered bioelectrochemical sensor based on CoMn2O4 nanoparticle modified cathode for sensitive and rapid detection of hydrogen peroxide. Sensors Actuators B Chem 271:247–255CrossRefGoogle Scholar
  14. 14.
    Balasubramanian P, Annalakshmi M, Chen SM, Sathesh T, Peng TK, Balamurugan TST (2018) Facile solvothermal preparation of Mn2CuO4 microspheres: excellent electrocatalyst for real-time detection of H2O2 released from live cells. ACS Appl Mater Interfaces 10:43543–43551CrossRefGoogle Scholar
  15. 15.
    Amala G, Saravanan J, Yoo DJ, Kim AR (2017) An environmentally benign one pot green synthesis of reduced graphene oxide-based composites for the enzyme free electrochemical detection of hydrogen peroxide. New J Chem 41:4022–4030CrossRefGoogle Scholar
  16. 16.
    Shi LB, Niu XH, Liu TT, Zhao HL, Lan MB (2015) Electrocatalytic sensing of hydrogen peroxide using a screen-printed carbon electrode modified with nitrogen-doped graphene nanoribbons. Microchim Acta 68:358–364Google Scholar
  17. 17.
    Chirizzi D, Guascito MR, Filippo E, Malitesta C, Tepore A (2016) A novel nonenzymatic amperometric hydrogen peroxide sensor based on CuO@Cu2O nanowires embedded into poly(vinyl alcohol). Talanta 147:124–131CrossRefGoogle Scholar
  18. 18.
    Morishita T, Soneda Y, Hatori H, Inagaki M (2007) Carbon-coated tungsten and molybdenum carbides for electrode of electrochemical capacitor. Electrochim Acta 52:2478–2484CrossRefGoogle Scholar
  19. 19.
    Guo Q, Liang F, Gao XY, Gan QC, Li XB, Li J, Lin Z, Tung CH, Wu LZ (2018) Metallic Co2C: a promising Cocatalyst to boost photocatalytic hydrogen evolution of colloidal quantum dots. ACS Catal 8:5890–5895CrossRefGoogle Scholar
  20. 20.
    Chhina H, Campbell S, Kesler O (2007) Ex situ evaluation of tungsten oxide as a catalyst support for PEMFCs. J Electrochem Soc 154:B533–B539CrossRefGoogle Scholar
  21. 21.
    Li S, Yang C, Yin Z, Yang H, Chen Y, Lin L, Li M, Li W, Hu G, Ma D (2017) Wet-chemistry synthesis of cobalt carbide nanoparticles as highly active and stable Electrocatalyst for hydrogen evolution reaction. Nano Res 10:1322–1328CrossRefGoogle Scholar
  22. 22.
    Fan HS, Yu H, Zhang Y, Zheng Y, Luo Y, Dai Z, Li B, Zong Y, Yan QY (2017) Fe doped Ni3C Nanodots in N-doped carbon Nanosheets for efficient hydrogen-evolution and oxygen-evolution Electrocatalyst. Angew Chem Int Ed 56:12566–12570CrossRefGoogle Scholar
  23. 23.
    Meyer S, Nikiforov AV, Petrushina IM, Köhler K, Christensen E, Jensen JO, Bjerrum NJ (2015) Transition metal carbides (WC, Mo2C, TaC, NbC) as potential electrocatalysts for the hydrogen evolution reaction (HER) at medium temperatures. Int J Hydrog Energy 40:2905–2911CrossRefGoogle Scholar
  24. 24.
    Burakov VS, Butsen AV, Brüser V, Harnisch F, Misakov PY, Nevar EA, Rosenbaum M, Savastenko NA, Tarasenko NV (2008) Synthesis of tungsten carbide nanopowder via submerged discharge method. J Nanopart Res 10:881–886CrossRefGoogle Scholar
  25. 25.
    Liu C, Zhou J, Xiao Y, Yang L, Yang D, Zhou D (2017) Structural and electrochemical studies of tungsten carbide/carbon composites for hydrogen evolution. Int J Hydrog Energy 42:29781–29790CrossRefGoogle Scholar
  26. 26.
    Xu YT, Xiao X, Ye ZM, Zhao S, Shen R, He CT, Chen XM (2017) Cage-confinement pyrolysis route to ultrasmall tungsten carbide nanoparticles for efficient electrocatalytic hydrogen evolution. J Am Chem Soc 139:5285–5288CrossRefGoogle Scholar
  27. 27.
    Zeng M, Chen Y, Li J, Xue H, Mendes RG, Liu J, Zhang T, Ruemmeli MH, Fu L (2017) 2D WC single crystal embedded in graphene for enhancing hydrogen evolution reaction. Nano Energy 33:356–362CrossRefGoogle Scholar
  28. 28.
    Lin H, Liu N, Shi Z, Guo Y, Tang Y, Gao Q (2016) Cobalt-doping in molybdenum-carbide nanowires toward efficient electrocatalytic hydrogen evolution. Adv Funct Mater 26:5590–5598CrossRefGoogle Scholar
  29. 29.
    Tominaga H, Aoki Y, Nagai M (2012) Hydrogenation of CO on molybdenum and cobalt molybdenum carbides. Appl Catal A Gen 423:192–204CrossRefGoogle Scholar
  30. 30.
    Gao Q, Zhang W, Shi Z, Yang L, Tang Y (2018) Structural design and electronic modulation of transition-metal-carbide Electrocatalysts toward efficient hydrogen evolution. Adv Mater 31:1802880.  https://doi.org/10.1002/adma.201802880 CrossRefGoogle Scholar
  31. 31.
    Xu YT, Xiao X, Ye ZM, Zhao S, Shen R, He CT, Zhang JP, Li Y, Chen XM (2017) Cage-confinement pyrolysis route to ultrasmall tungsten carbide nanoparticles for efficient electrocatalytic hydrogen evolution. J Am Chem Soc 139:5285–5288CrossRefGoogle Scholar
  32. 32.
    Wu HX, Zhang CX, Jin L, Yang H, Yang SP (2010) Preparation and magnetic properties of cobalt nanoparticles with dendrimers as templates. Mater Chem Phys 121:342–348CrossRefGoogle Scholar
  33. 33.
    Srinivas K, Vithal M, Sreedhar B, Raja MM, Reddy PV (2009) Structural, optical, and magnetic properties of Nanocrystalline co doped SnO2 based diluted magnetic semiconductors. J Phys Chem C 113:3543–3552CrossRefGoogle Scholar
  34. 34.
    Liu J, Yang C, Shang Y, Zhang P, Liu J, Zheng J (2018) Preparation of a nanocomposite material consisting of cuprous oxide, polyaniline and reduced graphene oxide, and its application to the electrochemical determination of hydrogen peroxide. Microchim Acta 185:172CrossRefGoogle Scholar
  35. 35.
    Zhang Y, Huang B, Yu F, Yuan Q, Gu M, Ji J, Li Y (2018) 3D nitrogen-doped graphite foam@Prussian blue: an electrochemical sensing platform for highly sensitive determination of H2O2 and glucose. Microchim Acta 185:86CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemical Engineering and BiotechnologyNational Taipei University of TechnologyTaipeiTaiwan, Republic of China
  2. 2.Research and Development Center for Smart Textile TechnologyNational Taipei University of TechnologyTaipeiTaiwan, Republic of China

Personalised recommendations