Advertisement

Microchimica Acta

, 186:268 | Cite as

Piezoelectric arsenite aptasensor based on the use of a self-assembled mercaptoethylamine monolayer and gold nanoparticles

  • Min Yuan
  • Qinqin Zhang
  • Zhihong Song
  • Tai Ye
  • Jinsong Yu
  • Hui Cao
  • Fei XuEmail author
Original Paper
  • 81 Downloads

Abstract

The authors describe a piezoelectric aptasensor for arsenite. A self assembeled monolayer (SAM) of mercaptoethylamine was prepared to immobilize arsenite on the surface of a quartz crystal microbalance. Gold nanoparticles were modified with arsenite aptamer to amplify the response frequency of the biosensor. Arsenite first binds to the SAM on the gold surface of the QCM. On addition of gold nanoparticles with aptamer (DNA-AuNp), the SAM-As(III)-aptamer sandwich is formed. This increases the resonance frequency of the sensor and allows trace concentration of arsenite to be determined. The aptasensor can detect arsenite in the 8 to 1000 nmol·L−1 concentration range with a 4.4 nmol·L−1 lower detection limit (at S/N = 3). The sandwich structure improves the specificity of the aptasensor without considering the conformational transition of the aptamer. The strategy described here conceivably has a large potential as it shows that small molecules can be sensed by using aptamers with unknown working mechanism.

Graphical abstract

Schematic presentation of a piezoelectric biosensor for arsenite detection by using a mercaptoethylamine monolayer and gold nanoparticles with respect to Arsenite first binds to the SAM on the gold surface of the QCM. Next, gold nanoparticles with aptamer (DNA-AuNp) are added to form a SAM-As(III)-aptamer sandwich which affects the resonance frequency.

Keywords

Arsenite detection Piezoelectric sensor Signal amplification Quartz crystal microbalance biosensor Self-assembly Sandwich structure 

Notes

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (61501295 and 31671934), Ministry of Science and Technology of China (2017YFC1600603), and Shanghai Committee of Science and Technology (18391901200 and 17391901500).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

References

  1. 1.
    Jha SK, Mishra VK, Damodaran T, Sharma DK, Kumar P (2017) Arsenic in the groundwater: occurrence, toxicological activities, and remedies. J Environ Sci Health, Part C Environ Carcinog Ecotoxicol Rev 35(2):84–103CrossRefGoogle Scholar
  2. 2.
    Cubadda F, Jackson BP, Cottingham KL, Van Horne YO, Kurzius-Spencer M (2017) Human exposure to dietary inorganic arsenic and other arsenic species: state of knowledge, gaps and uncertainties. Sci Total Environ 579:1228–1239CrossRefGoogle Scholar
  3. 3.
    Liu Y, Huang Z, Xie Q, Sun L, Gu T, Li Z, Bu L, Yao S, Tu X, Luo X, Luo S (2013) Electrodeposition of electroreduced graphene oxide-Au nanoparticles composite film at glassy carbon electrode for anodic stripping voltammetric analysis of trace arsenic(III). Sensors Actuators B Chem 188:894–901CrossRefGoogle Scholar
  4. 4.
    National Health Commission of the People's Republic of China, China Food and Drug Administration (2017) China food safety standards for food contaminants. GB 2762-2017Google Scholar
  5. 5.
    Reis VAT, Duarte AC (2018) Analytical methodologies for arsenic speciation in macroalgae: a critical review. TrAC Trends Anal Chem 102:170–184CrossRefGoogle Scholar
  6. 6.
    Skladal P (2016) Piezoelectric biosensors. TrAC Trends Anal Chem 79:127–133CrossRefGoogle Scholar
  7. 7.
    Asai N, Terasawa H, Shimizu T, Shingubara S, Ito T (2017) Sensitized mass change detection using Au nanoporous electrode for biosensing. Jpn J Appl Phys 56(6):06GG04CrossRefGoogle Scholar
  8. 8.
    Wang L, Wang R, Fang C, Jiang T, Hong W, Slavik M, Hua W, Li Y (2017) QCM-based aptamer selection and detection of Salmonella typhimurium. Food Chem 221:776–782CrossRefGoogle Scholar
  9. 9.
    Zhang Q, Huang Y, Zhao R, Liu G, Chen Y (2008) Determining binding sites of drugs on human serum albumin using FIA-QCM. Biosens Bioelectron 24(1):48–54CrossRefGoogle Scholar
  10. 10.
    John J, Hugar KM, Riverameléndez J, Iv HAK, Rus ED, Wang H, Coates GW, Abruña HD (2014) An electrochemical quartz crystal microbalance study of a prospective alkaline anion exchange membrane material for fuel cells: anion exchange dynamics and membrane swelling. J Am Chem Soc 136(14):5309–5322CrossRefGoogle Scholar
  11. 11.
    Sartore L, Barbaglio M, Borgese L, Bontempi E (2011) Polymer-grafted QCM chemical sensor and application to heavy metal ions real time detection. Sensors Actuators B Chem 155(2):538–544CrossRefGoogle Scholar
  12. 12.
    Pohanka M (2017) The piezoelectric biosensors: principles and applications, a review. Int J Electrochem Sci 12(1):496–506CrossRefGoogle Scholar
  13. 13.
    Zhonghan S, Jianhua H, Jianping Z, Hong Z, Long J (2011) Method for detection of Hg 2+ based on the specific thymine-Hg 2+−thymine interaction in the DNA hybridization on the surface of quartz crystal microbalance. Colloids Surf B: Biointerfaces 87(2):289–292CrossRefGoogle Scholar
  14. 14.
    Dong Z-M, Zhao G-C (2012) Quartz crystal microbalance aptasensor for sensitive detection of mercury(II) based on signal amplification with gold nanoparticles. Sensors 12(6):7080–7094CrossRefGoogle Scholar
  15. 15.
    Yuan M, Song Z, Fei J, Wang X, Xu F, Cao H, Yu J (2017) Aptasensor for lead(II) based on the use of a quartz crystal microbalance modified with gold nanoparticles. Microchim Acta 184(5):1397–1403CrossRefGoogle Scholar
  16. 16.
    He P, Liu L, Qiao W, Zhang S (2014) Ultrasensitive detection of thrombin using surface plasmon resonance and quartz crystal microbalance sensors by aptamer-based rolling circle amplification and nanoparticle signal enhancement. Chem Commun 50(12):1481–1484CrossRefGoogle Scholar
  17. 17.
    Osypova A, Thakar D, Dejeu J, Bonnet H, Van der Heyden A, Dubacheva GV, Richter RP, Defrancq E, Spinelli N, Coche-Guerente L, Labbe P (2015) Sensor based on aptamer folding to detect low-molecular weight Analytes. Anal Chem 87(15):7566–7574CrossRefGoogle Scholar
  18. 18.
    Kim M, Um H-J, Bang S, Lee S-H, Oh S-J, Han J-H, Kim K-W, Min J, Kim Y-H (2009) Arsenic removal from Vietnamese groundwater using the arsenic-binding DNA aptamer. Environ Sci Technol 43(24):9335–9340CrossRefGoogle Scholar
  19. 19.
    Li D, Li J, Jia X, Han Y, Wang E (2012) Electrochemical determination of arsenic(III) on mercaptoethylamine modified Au electrode in neutral media. Anal Chim Acta 733:23–27CrossRefGoogle Scholar
  20. 20.
    Zeinabad HA, Ghourchian H, Falahati M, Fathipour M, Azizi M, Boutorabi SM (2018) Ultrasensitive interdigitated capacitance immunosensor using gold nanoparticles. Nanotechnology 29(26):265102CrossRefGoogle Scholar
  21. 21.
    Billah MM, Hodges CS, Hays HCW, Millner PA (2010) Directed immobilization of reduced antibody fragments onto a novel SAM on gold for myoglobin impedance immunosensing. Bioelectrochemistry 80(1):49–54CrossRefGoogle Scholar
  22. 22.
    Liu X, Hu Y, Sheng X, Peng Y, Bai J, Lv Q, Jia H, Jiang H, Gao Z (2017) Rapid high-throughput detection of diethylstilbestrol by using the arrayed langasite crystal microbalance combined with gold nanoparticles through competitive immunoassay. Sensors Actuators B Chem 247:245–253CrossRefGoogle Scholar
  23. 23.
    Tan Nhiem L, Park S, Park SJ (2016) Detection of HIV-1 antigen by quartz crystal microbalance using gold nanoparticles. Sensors Actuators B Chem 237:452–458CrossRefGoogle Scholar
  24. 24.
    Ji X, Song X, Li J, Bai Y, Yang W, Peng X (2007) Size control of gold nanocrystals in citrate reduction: the third role of citrate. J Am Chem Soc 129(45):13939–13948CrossRefGoogle Scholar
  25. 25.
    Pungjunun K, Chaiyo S, Jantrahong I, Nantaphol S, Siangproh W, Chailapakul O (2018) Anodic stripping voltammetric determination of total arsenic using a gold nanoparticle-modified boron-doped diamond electrode on a paper-based device. Microchim Acta 185(7):1436–5073CrossRefGoogle Scholar
  26. 26.
    Carrera P, Espinoza-Montero PJ, Fernandez L, Romero H, Alvarado J (2017) Electrochemical determination of arsenic in natural waters using carbon fiber ultra-microelectrodes modified with gold nanoparticles. Talanta 166:198–206CrossRefGoogle Scholar
  27. 27.
    Gong L, Du B, Pan L, Liu Q, Yang K, Wang W, Zhao H, Wu L, He Y (2017) Colorimetric aggregation assay for arsenic(III) using gold nanoparticles. Microchim Acta 184(4):1185–1190CrossRefGoogle Scholar
  28. 28.
    Ravikumar A, Panneerselvam P, Radhakrishnan K, Christus AAB, Sivanesan S (2018) MoS2 nanosheets as an effective fluorescent quencher for successive detection of arsenic ions in aqueous system. Appl Surf Sci 449:31–38CrossRefGoogle Scholar
  29. 29.
    Song L, Mao K, Zhou X, Hu J (2016) A novel biosensor based on Au@Ag core-shell nanoparticles for SERS detection of arsenic (III). Talanta 146:285–290CrossRefGoogle Scholar
  30. 30.
    Lin S, Wang W, Hu C, Yang G, Ko CN, Ren K, Leung CH, Ma DL (2017) The application of a G-quadruplex based assay with an iridium(III) complex to arsenic ion detection and its utilization in a microfluidic chip. J Mater Chem B 5(3):479–484CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Min Yuan
    • 1
  • Qinqin Zhang
    • 1
  • Zhihong Song
    • 1
  • Tai Ye
    • 1
  • Jinsong Yu
    • 1
  • Hui Cao
    • 1
  • Fei Xu
    • 1
    Email author
  1. 1.Institute of Food Quality and SafetyUniversity of Shanghai for Science and TechnologyShanghaiPeople’s Republic of China

Personalised recommendations