Microchimica Acta

, 186:267 | Cite as

A nanocomposite prepared from magnetite nanoparticles, polyaniline and carboxy-modified graphene oxide for non-enzymatic sensing of glucose

  • Razia Batool
  • Muhammad Asim Akhtar
  • Akhtar HayatEmail author
  • Dongxue Han
  • Li Niu
  • Muhammad Ashfaq Ahmad
  • Mian Hasnain NawazEmail author
Original Paper


The authors report on the synthesis of carboxy functionalized graphene oxide (fGO) decorated with magnetite (Fe3O4) nanoparticles. The resulting nanomaterial was used to prepare a composite with polyaniline (PANI) which was characterized by UV-vis, Fourier transform-infrared and Raman spectroscopies. Its surface morphologies were characterized by atomic force and scanning electron microscopies. A screen-printed carbon electrode was then modified with the nanocomposite to obtain an enzyme-free glucose sensor. The large surface of fGO and Fe3O4 along with the enhanced charge transfer capability of PANI warrant a pronounced electrochemical response (typically measured at 0.18 V versus Ag/AgCl) which is suppressed in the presence of glucose. This reduction of current by glucose was used to design a sensitive method for quantification of glucose. The response of the modified SPCE is linear in the 0.05 μM – 5 mM glucose concentration range, and the lower detection limit is 0.01 μM.

Graphical abstract

Schematic illustration of in-situ anchoring of Iron oxide on functionalized graphene oxide and synthesis of its polymeric nanocomposite for non-enzymatic detection of Glucose. The nanocomposite modified screen printed interface enabled monitoring of glucose at lower potential with higher precision. GO (graphene oxide), fGO (functionalized graphene oxide), PANI (polyaniline).


Screen printed carbon electrode Functionalized graphene oxide Iron oxide Polyaniline Electrochemical sensor Glucose detection Serum sample Enzyme free glucose sensor Metal oxide decorated graphene 



M. H. N thanks the Higher Education Commission of Pakistan for financial assistance under start-up research grant and national research program for universities (21-329/SRGP/R&D/HEC/2014 and 20-4993/R&D/HEC/14/614). R. B acknowledges the HEC supported studentship under NRPU.

Compliance with ethical standards

The author(s) declare that they have no competing interests.


  1. 1.
    Fu S, Fan G, Yang L, Li F (2015) Non-enzymatic glucose sensor based on au nanoparticles decorated ternary Ni-Al layered double hydroxide/single-walled carbon nanotubes/graphene nanocomposite. Electrochim Acta 152:146–154CrossRefGoogle Scholar
  2. 2.
    Rubino F, Nathan DM, Eckel RH, Schauer PR, Alberti KGM, Zimmet PZ, Del Prato S, Ji L, Sadikot SM, Herman WH (2016) Metabolic surgery in the treatment algorithm for type 2 diabetes: a joint statement by international diabetes organizations. Surg Obes Relat Dis 12(6):1144–1162CrossRefGoogle Scholar
  3. 3.
    Rahim A, Rehman ZU, Mir S, Muhammad N, Rehman F, Nawaz MH, Yaqub M, Siddiqi SA, Chaudhry AA (2017) A non-enzymatic glucose sensor based on CuO-nanostructure modified carbon ceramic electrode. J Mol Liq 248:425–431CrossRefGoogle Scholar
  4. 4.
    Turner AP (2013) Biosensors: sense and sensibility. Chem Soc Rev 42(8):3184–3196CrossRefGoogle Scholar
  5. 5.
    Wang H-C, Lee A-R (2015) Recent developments in blood glucose sensors. J Food Drug Anal 23(2):191–200CrossRefGoogle Scholar
  6. 6.
    Lupu A, Lisboa P, Valsesia A, Colpo P, Rossi F (2009) Hydrogen peroxide detection nanosensor array for biosensor development. Sensors Actuators B Chem 137(1):56–61CrossRefGoogle Scholar
  7. 7.
    Ahmad R, Tripathy N, Ahn M-S, Bhat KS, Mahmoudi T, Wang Y, Yoo J-Y, Kwon D-W, Yang H-Y, Hahn Y-B (2017) Highly efficient non-enzymatic glucose sensor based on CuO modified vertically-grown ZnO nanorods on electrode. Sci Rep 7(1):5715CrossRefGoogle Scholar
  8. 8.
    Cao X, Wang N (2011) A novel non-enzymatic glucose sensor modified with Fe2O3 nanowire arrays. Analyst 136(20):4241–4246CrossRefGoogle Scholar
  9. 9.
    Li F, Song J, Yang H, Gan S, Zhang Q, Han D, Ivaska A, Niu L (2009) One-step synthesis of graphene/SnO2 nanocomposites and its application in electrochemical supercapacitors. Nanotechnology 20(45):455602CrossRefGoogle Scholar
  10. 10.
    Morales-Narváez E, Baptista-Pires L, Zamora-Gálvez A, Merkoçi A (2017) Graphene-based biosensors: going simple. Adv Mater 29(7)Google Scholar
  11. 11.
    Mohd Yazid SNA, Md Isa I, Abu Bakar S, Hashim N, Ab Ghani S (2014) A review of glucose biosensors based on graphene/metal oxide nanomaterials. Anal Lett 47(11):1821–1834CrossRefGoogle Scholar
  12. 12.
    Mei H, Sheng Q, Wu H, Zhang X, Wang S, Xia Q (2015) Nonenzymatic sensing of glucose at neutral pH values and low working potential using a glassy carbon electrode modified with platinum-iron alloy nanoparticles on a carbon support. Microchim Acta 182(15–16):2395–2401CrossRefGoogle Scholar
  13. 13.
    Dhara K, Mahapatra DR (2018) Electrochemical nonenzymatic sensing of glucose using advanced nanomaterials. Microchim Acta 185(1):49CrossRefGoogle Scholar
  14. 14.
    Kuila T, Bose S, Mishra AK, Khanra P, Kim NH, Lee JH (2012) Chemical functionalization of graphene and its applications. Prog Mater Sci 57(7):1061–1105CrossRefGoogle Scholar
  15. 15.
    Lim JH, Mirkin CA (2002) Electrostatically driven dip-pen nanolithography of conducting polymers. Adv Mater 14(20):1474–1477CrossRefGoogle Scholar
  16. 16.
    Wang H, Hao Q, Yang X, Lu L, Wang X (2010) Effect of graphene oxide on the properties of its composite with polyaniline. ACS Appl Mater Interfaces 2(3):821–828CrossRefGoogle Scholar
  17. 17.
    Liu Y, Deng R, Wang Z, Liu H (2012) Carboxyl-functionalized graphene oxide–polyaniline composite as a promising supercapacitor material. J Mater Chem 22(27):13619–13624CrossRefGoogle Scholar
  18. 18.
    Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1339CrossRefGoogle Scholar
  19. 19.
    Kong L, Lu X, Zhang W (2008) Facile synthesis of multifunctional multiwalled carbon nanotubes/Fe3O4 nanoparticles/polyaniline composite nanotubes. J Solid State Chem 181(3):628–636CrossRefGoogle Scholar
  20. 20.
    Yu Y, Chen Z, He S, Zhang B, Li X, Yao M (2014) Direct electron transfer of glucose oxidase and biosensing for glucose based on PDDA-capped gold nanoparticle modified graphene/multi-walled carbon nanotubes electrode. Biosens Bioelectron 52:147–152CrossRefGoogle Scholar
  21. 21.
    Akhtar MA, Hayat A, Iqbal N, Marty JL, Nawaz MH (2017) Functionalized graphene oxide–polypyrrole–chitosan (fGO–PPy–CS) modified screen-printed electrodes for non-enzymatic hydrogen peroxide detection. J Nanopart Res 19(10):334CrossRefGoogle Scholar
  22. 22.
    Qian T, Zhou X, Yu C, Wu S, Shen J (2013) Highly dispersed carbon nanotube/polypyrrole core/shell composites with improved electrochemical capacitive performance. J Mater Chem A 1(48):15230–15234CrossRefGoogle Scholar
  23. 23.
    Chauhan N, Narang J, Rawal R, Pundir C (2011) A highly sensitive non-enzymatic ascorbate sensor based on copper nanoparticles bound to multi walled carbon nanotubes and polyaniline composite. Synth Met 161(21–22):2427–2433CrossRefGoogle Scholar
  24. 24.
    Hong AJ, Song EB, Yu HS, Allen MJ, Kim J, Fowler JD, Wassei JK, Park Y, Wang Y, Zou J (2011) Graphene flash memory. ACS Nano 5(10):7812–7817CrossRefGoogle Scholar
  25. 25.
    Gao C, Jin YZ, Kong H, Whitby RL, Acquah SF, Chen G, Qian H, Hartschuh A, Silva S, Henley S (2005) Polyurea-functionalized multiwalled carbon nanotubes: synthesis, morphology, and Raman spectroscopy. J Phys Chem B 109(24):11925–11932CrossRefGoogle Scholar
  26. 26.
    Zhao Y, Song X, Song Q, Yin Z (2012) A facile route to the synthesis copper oxide/reduced graphene oxide nanocomposites and electrochemical detection of catechol organic pollutant. CrystEngComm 14(20):6710–6719CrossRefGoogle Scholar
  27. 27.
    Wang Z, Yuan J, Li M, Han D, Zhang Y, Shen Y, Niu L, Ivaska A (2007) Electropolymerization and catalysis of well-dispersed polyaniline/carbon nanotube/gold composite. J Electroanal Chem 599(1):121–126CrossRefGoogle Scholar
  28. 28.
    Ocaña C, Hayat A, Mishra RK, Vasilescu A, Del Valle M, Marty J-L (2015) Label free aptasensor for lysozyme detection: a comparison of the analytical performance of two aptamers. Bioelectrochemistry 105:72–77CrossRefGoogle Scholar
  29. 29.
    Chang G, Shu H, Ji K, Oyama M, Liu X, He Y (2014) Gold nanoparticles directly modified glassy carbon electrode for non-enzymatic detection of glucose. Appl Surf Sci 288:524–529CrossRefGoogle Scholar
  30. 30.
    Zhang C, Ni H, Chen R, Zhan W, Zhang B, Lei R, Xiao T, Zha Y (2015) Enzyme-free glucose sensing based on Fe3O4 nanorod arrays. Microchim Acta 182(9–10):1811–1818CrossRefGoogle Scholar
  31. 31.
    Ahammad AS, Al Mamun A, Akter T, Mamun M, Faraezi S, Monira F (2016) Enzyme-free impedimetric glucose sensor based on gold nanoparticles/polyaniline composite film. J Solid State Electrochem 20(7):1933–1939CrossRefGoogle Scholar
  32. 32.
    Shahnavaz Z, Lorestani F, Meng WP, Alias Y (2015) Core-shell–CuFe 2 O 4/PPy nanocomposite enzyme-free sensor for detection of glucose. J Solid State Electrochem 19(4):1223–1233CrossRefGoogle Scholar
  33. 33.
    Zhang L, S-m Y, X-j L (2014) Amperometric nonenzymatic glucose sensor based on a glassy carbon electrode modified with a nanocomposite made from nickel (II) hydroxide nanoplates and carbon nanofibers. Microchim Acta 181(3–4):365–372CrossRefGoogle Scholar
  34. 34.
    Liu Z, Zhao B, Shi Y, Guo C, Yang H, Li Z (2010) Novel nonenzymatic hydrogen peroxide sensor based on iron oxide–silver hybrid submicrospheres. Talanta 81(4–5):1650–1654CrossRefGoogle Scholar
  35. 35.
    Whang D (2009) Amperometric glucose biosensor based on a Pt-dispersed hierarchically porous electrode. J Korean Phys Soc 54(4)Google Scholar
  36. 36.
    Heidari H, Habibi E (2016) Amperometric enzyme-free glucose sensor based on the use of a reduced graphene oxide paste electrode modified with electrodeposited cobalt oxide nanoparticles. Microchim Acta 183(7):2259–2266CrossRefGoogle Scholar
  37. 37.
    Zhong A, Luo X, Chen L, Wei S, Liang Y, Li X (2015) Enzyme-free sensing of glucose on a copper electrode modified with nickel nanoparticles and multiwalled carbon nanotubes. Microchim Acta 182(5–6):1197–1204CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Razia Batool
    • 1
  • Muhammad Asim Akhtar
    • 1
  • Akhtar Hayat
    • 1
    Email author
  • Dongxue Han
    • 2
    • 3
  • Li Niu
    • 2
    • 3
  • Muhammad Ashfaq Ahmad
    • 4
  • Mian Hasnain Nawaz
    • 1
    • 2
    Email author
  1. 1.Interdisciplinary Research Centre in Biomedical Materials (IRCBM)COMSATS University Islamabad Lahore CampusLahorePakistan
  2. 2.State Key Laboratory of Electroanalytical Chemistry, c/o Engineering Laboratory for Modern Analytical Techniques, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPeople’s Republic of China
  3. 3.Center for Advanced Analytical Science, c/o School of Chemistry and Chemical EngineeringGuangzhou UniversityGuangzhouPeople’s Republic of China
  4. 4.Department of PhysicsCOMSATS University Islamabad Lahore CampusLahorePakistan

Personalised recommendations