Advertisement

Microchimica Acta

, 186:224 | Cite as

An electrochemical immunosensor for the corona virus associated with the Middle East respiratory syndrome using an array of gold nanoparticle-modified carbon electrodes

  • Laila Ali Layqah
  • Shimaa EissaEmail author
Original Paper
  • 51 Downloads

Abstract

The Middle East respiratory syndrome corona virus (MERS-CoV) is highly pathogenic. An immunosensor for the determination of MERS-CoV is described here. It is based on a competitive assay carried out on an array of carbon electrodes (DEP) modified with gold nanoparticles. Recombinant spike protein S1 was used as a biomarker for MERS CoV. The electrode array enables multiplexed detection of different CoVs. The biosensor is based on indirect competition between free virus in the sample and immobilized MERS-CoV protein for a fixed concentration of antibody added to the sample. Voltammetric response is detected by monitoring the change in the peak current (typically acquired at a working potential of −0.05 V vs. Ag/AgCl) after addition of different concentrations of antigen against MERS-CoV. Electrochemical measurements using ferrocyanide/ferricyanide as a probe were recorded using square wave voltammetry (SWV). Good linear response between the sensor response and the concentrations from 0.001 to 100 ng.mL−1 and 0.01 to 10,000 ng.mL−1 were observed for MERS-CoV and HCoV, respectively. The assay was performed in 20 min with detection limit as low as 0.4 and 1.0 pg.mL−1 for HCoV and MERS-CoV, respectively. The method is highly selective over non-specific proteins such as Influenza A and B. The method is single-step, sensitive and accurate. It was successfully applied to spiked nasal samples.

Graphical abstract

An electrochemical immunoassay is described for the Middle East Respiratory Syndrome Corona Virus (MERS-CoV). The method is based on a competitive assay carried out on a carbon array electrodes (DEP) nanostructured with gold nanoparticles. The array electrodes enable the multiplexed detection of different types of Corona Virus.

Keywords

Corona virus Voltammetry Array electrode Electrochemical biosensor MERS-CoV HCoV Multiplexed biosensor Simultaneous detection Competitive immunosensor 

Notes

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3345_MOESM1_ESM.docx (13 kb)
ESM 1 (DOCX 12 kb)

References

  1. 1.
    Hamre D, Procknow JJ (1966) A new virus isolated from the human respiratory tract. Proc Soc Exp Biol Med 121:190–193CrossRefGoogle Scholar
  2. 2.
    Chen Y, Chan KH, Kang Y, Chen H, Luk HK, Poon RW, Chan JF, Yuen KY, Xia N, Lau SK, Woo PC (2015) A sensitive and specific antigen detection assay for Middle East respiratory syndrome coronavirus. Emerg Microbes Infect 4:e26.  https://doi.org/10.1038/emi.2015.26 CrossRefGoogle Scholar
  3. 3.
    Hijawi B, Abdallat M, Sayaydeh A, Alqasrawi S, Haddadin A, Jaarour N, Alsheikh S, Alsanouri T (2013) Novel coronavirus infections in Jordan, April 2012: epidemiological findings from a retrospective investigation. East Mediterr Health J 19(Suppl 1):S12–S18CrossRefGoogle Scholar
  4. 4.
    Zhao J, Alshukairi AN, Baharoon SA, Ahmed WA, Bokhari AA, Nehdi AM, Layqah LA, Alghamdi MG, Al Gethamy MM, Dada AM, Khalid I, Boujelal M, Al Johani SM, Vogel L, Subbarao K, Mangalam A, Wu C, Ten Eyck P, Perlman S (2017) Recovery from the Middle East respiratory syndrome is associated with antibody and T-cell responses. Sci Immunol 2:eaan5393.  https://doi.org/10.1126/sciimmunol.aan5393 CrossRefGoogle Scholar
  5. 5.
    Park HY, Lee EJ, Ryu YW, Kim Y, Kim H, Lee H, Yi SJ (2015) Epidemiological investigation of MERS-CoV spread in a single hospital in South Korea, May to June 2015. Euro Surveill 20:1–6Google Scholar
  6. 6.
    Assiri A, Al-Tawfiq JA, Al-Rabeeah AA, Al-Rabiah FA, Al-Hajjar S, Al-Barrak A, Flemban H, Al-Nassir WN, Balkhy HH, Al-Hakeem RF, Makhdoom HQ, Zumla AI, Memish ZA (2013) Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study. Lancet Infect Dis 13:752–761.  https://doi.org/10.1016/s1473-3099(13)70204-4 CrossRefGoogle Scholar
  7. 7.
    Memish ZA, Al-Tawfiq JA, Assiri A, AlRabiah FA, Al Hajjar S, Albarrak A, Flemban H, Alhakeem RF, Makhdoom HQ, Alsubaie S, Al-Rabeeah AA (2014) Middle East respiratory syndrome coronavirus disease in children. Pediatr Infect Dis J 33:904–906.  https://doi.org/10.1097/inf.0000000000000325 CrossRefGoogle Scholar
  8. 8.
    Memish ZA, Zumla AI, Al-Hakeem RF, Al-Rabeeah AA, Stephens GM (2013) Family cluster of Middle East respiratory syndrome coronavirus infections. N Engl J Med 368:2487–2494.  https://doi.org/10.1056/NEJMoa1303729 CrossRefGoogle Scholar
  9. 9.
    Corman VM, Muller MA, Costabel U, Timm J, Binger T, Meyer B, Kreher P, Lattwein E, Eschbach-Bludau M, Nitsche A, Bleicker T, Landt O, Schweiger B, Drexler JF, Osterhaus AD, Haagmans BL, Dittmer U, Bonin F, Wolff T, Drosten C (2012) Assays for laboratory confirmation of novel human coronavirus (hCoV-EMC) infections. Euro Surveill 17:20334Google Scholar
  10. 10.
    Mahallawi WH (2018) Case report: detection of the Middle East respiratory syndrome corona virus (MERS-CoV) in nasal secretions of a dead human. J Taibah Univ Med Sci 13:302–304.  https://doi.org/10.1016/j.jtumed.2017.07.004 CrossRefGoogle Scholar
  11. 11.
    Buchholz U, Muller MA, Nitsche A, Sanewski A, Wevering N, Bauer-Balci T, Bonin F, Drosten C, Schweiger B, Wolff T, Muth D, Meyer B, Buda S, Krause G, Schaade L, Haas W (2013) Contact investigation of a case of human novel coronavirus infection treated in a German hospital, October-November 2012. Euro Surveill 18:20406Google Scholar
  12. 12.
    Reusken C, Mou H, Godeke GJ, van der Hoek L, Meyer B, Müller MA, Haagmans B, de Sousa R, Schuurman N, Dittmer U, Rottier P, Osterhaus A, Drosten C, Bosch BJ, Koopmans M (2013) Specific serology for emerging human coronaviruses by protein microarray. Euro Surveill 18:20441CrossRefGoogle Scholar
  13. 13.
    Stranieri A, Lauzi S, Giordano A, Paltrinieri S (2017) Reverse transcriptase loop-mediated isothermal amplification for the detection of feline coronavirus. J Virol Methods 243:105–108.  https://doi.org/10.1016/j.jviromet.2017.01.009 CrossRefGoogle Scholar
  14. 14.
    Shirato K, Semba S, El-Kafrawy SA, Hassan AM, Tolah AM, Takayama I, Kageyama T, Notomi T, Kamitani W, Matsuyama S, Azhar EI (2018) Development of fluorescent reverse transcription loop-mediated isothermal amplification (RT-LAMP) using quenching probes for the detection of the Middle East respiratory syndrome coronavirus. J Virol Methods 258:41–48.  https://doi.org/10.1016/j.jviromet.2018.05.006 CrossRefGoogle Scholar
  15. 15.
    Kumar P (2013) Methods for rapid virus identification and quantification. Mater Methods 3:207Google Scholar
  16. 16.
    Du L, Zhao G, Yang Y, Qiu H, Wang L, Kou Z, Tao X, Yu H, Sun S, Tseng CT, Jiang S, Li F, Zhou Y (2014) A conformation-dependent neutralizing monoclonal antibody specifically targeting receptor-binding domain in Middle East respiratory syndrome coronavirus spike protein. J Virol 88:7045–7053.  https://doi.org/10.1128/jvi.00433-14 CrossRefGoogle Scholar
  17. 17.
    Zuo B, Li S, Guo Z, Zhang J, Chen C (2004) Piezoelectric immunosensor for SARS-associated coronavirus in sputum. Anal Chem 76:3536–3540.  https://doi.org/10.1021/ac035367b CrossRefGoogle Scholar
  18. 18.
    Huang JC, Chang YF, Chen KH, Su LC, Lee CW, Chen CC, Chen YM, Chou C (2009) Detection of severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein in human serum using a localized surface plasmon coupled fluorescence fiber-optic biosensor. Biosens Bioelectron 25:320–325.  https://doi.org/10.1016/j.bios.2009.07.012 CrossRefGoogle Scholar
  19. 19.
    Koo B, Jin CE, Lee TY, Lee JH, Park MK, Sung H, Park SY, Lee HJ, Kim SM, Kim JY, Kim SH, Shin Y (2017) An isothermal, label-free, and rapid one-step RNA amplification/detection assay for diagnosis of respiratory viral infections. Biosens Bioelectron 90:187–194.  https://doi.org/10.1016/j.bios.2016.11.051 CrossRefGoogle Scholar
  20. 20.
    Jung IY, You JB, Choi BR, Kim JS, Lee HK, Jang B, Jeong HS, Lee K, Im SG, Lee H (2016) A highly sensitive molecular detection platform for robust and facile diagnosis of Middle East Respiratory Syndrome (MERS) Corona Virus. Adv Healthc Mater 5:2168–2173.  https://doi.org/10.1002/adhm.201600334 CrossRefGoogle Scholar
  21. 21.
    Yang Z-H, Zhuo Y, Yuan R, Chai Y-Q (2015) An amplified electrochemical immunosensor based on in situ-produced 1-naphthol as electroactive substance and graphene oxide and Pt nanoparticles functionalized CeO2 nanocomposites as signal enhancer. Biosens Bioelectron 69:321–327.  https://doi.org/10.1016/j.bios.2015.01.035 CrossRefGoogle Scholar
  22. 22.
    Diouani MF, Helali S, Hafaid I, Hassen WM, Snoussi MA, Ghram A, Jaffrezic-Renault N, Abdelghani A (2008) Miniaturized biosensor for avian influenza virus detection. Mater Sci Eng C 28:580–583CrossRefGoogle Scholar
  23. 23.
    Huang J, Xie Z, Luo S, Han J-H, Lee D, Chew CHC, Kim T, Pak JJ (2016) A multi-virus detectable microfluidic electrochemical immunosensor for simultaneous detection of H1N1, H5N1, and H7N9 virus using ZnO nanorods for sensitivity enhancement. Sens Actuators B Chem 228:36–42CrossRefGoogle Scholar
  24. 24.
    Miodek A, Vidic J, Sauriat-Dorizon H, Richard C-A, Le Goffic R, Korri-Youssoufi H, Chevalier C (2014) Electrochemical detection of the oligomerization of PB1-F2 influenza a virus protein in infected cells. Anal Chem 86:9098–9105.  https://doi.org/10.1021/ac5018056 CrossRefGoogle Scholar
  25. 25.
    Huang J, Xie Z, Xie Z, Luo S, Xie L, Huang L, Fan Q, Zhang Y, Wang S, Zeng T (2016) Silver nanoparticles coated graphene electrochemical sensor for the ultrasensitive analysis of avian influenza virus H7. Anal Chim Acta 913:121–127.  https://doi.org/10.1016/j.aca.2016.01.050 CrossRefGoogle Scholar
  26. 26.
    Wu Z, Zhou C-H, Chen J-J, Xiong C, Chen Z, Pang D-W, Zhang Z-L (2015) Bifunctional magnetic nanobeads for sensitive detection of avian influenza A (H7N9) virus based on immunomagnetic separation and enzyme-induced metallization. Biosens Bioelectron 68:586–592CrossRefGoogle Scholar
  27. 27.
    Singh R, Hong S, Jang J (2017) Label-free detection of influenza viruses using a reduced graphene oxide-based electrochemical immunosensor integrated with a microfluidic platform. Sci Rep 7:42771.  https://doi.org/10.1038/srep42771 CrossRefGoogle Scholar
  28. 28.
    Huang H, Bai W, Dong C, Guo R, Liu Z (2015) An ultrasensitive electrochemical DNA biosensor based on graphene/Au nanorod/polythionine for human papillomavirus DNA detection. Biosens Bioelectron 68:442–446.  https://doi.org/10.1016/j.bios.2015.01.039 CrossRefGoogle Scholar
  29. 29.
    Yanez-Sedeno P, Pingarron JM (2005) Gold nanoparticle-based electrochemical biosensors. Anal Bioanal Chem 382:884–886.  https://doi.org/10.1007/s00216-005-3221-5 CrossRefGoogle Scholar
  30. 30.
    Yeh YC, Creran B, Rotello VM (2012) Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale 4:1871–1880.  https://doi.org/10.1039/c1nr11188d CrossRefGoogle Scholar
  31. 31.
    Wang D, Dou W, Zhao G, Chen Y (2014) Immunosensor based on electrodeposition of goldnanoparticles and ionic liquid composite for detection of Salmonella pullorum. J Microbiol Methods 106:110–118.  https://doi.org/10.1016/j.mimet.2014.08.016 CrossRefGoogle Scholar
  32. 32.
    Eissa S, Abdulkarim H, Dasouki M, Al Mousa H, Arnout R, Al Saud B, Rahman AA, Zourob M (2018) Multiplexed detection of DOCK8, PGM3 and STAT3 proteins for the diagnosis of Hyper-Immunoglobulin E syndrome using gold nanoparticles-based immunosensor array platform. Biosens Bioelectron 117:613–619.  https://doi.org/10.1016/j.bios.2018.06.058 CrossRefGoogle Scholar
  33. 33.
    Eissa S, Zourob M (2017) Aptamer- based label-free electrochemical biosensor array for the detection of total and glycated hemoglobin in human whole blood. Sci Rep 7(1):1016.  https://doi.org/10.1038/s41598-017-01226-0 CrossRefGoogle Scholar
  34. 34.
    Eissa S, Zourob M (2017) Competitive voltammetric morphine immunosensor using a gold nanoparticle decorated graphene electrode. Microchim Acta 184:2281–2289.  https://doi.org/10.1007/s00604-017-2261-9 CrossRefGoogle Scholar
  35. 35.
    Elshafey R, Tavares AC, Siaj M, Zourob M (2013) Electrochemical impedance immunosensor based on gold nanoparticles–protein G for the detection of cancer marker epidermal growth factor receptor in human plasma and brain tissue. Biosens Bioelectron 50:143–149.  https://doi.org/10.1016/j.bios.2013.05.063 CrossRefGoogle Scholar
  36. 36.
    Chen Z, Li L, Zhao H, Guo L, Mu X (2011) Electrochemical impedance spectroscopy detection of lysozyme based on electrodeposited gold nanoparticles. Talanta 83:1501–1506.  https://doi.org/10.1016/j.talanta.2010.11.042 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryAlfaisal UniversityRiyadhSaudi Arabia

Personalised recommendations