Microchimica Acta

, 186:240 | Cite as

A bioinspired antifouling zwitterionic interface based on reduced graphene oxide carbon nanofibers: electrochemical aptasensing of adenosine triphosphate

  • Tingting Zhang
  • Haixin Xu
  • Zhiqian Xu
  • Yue Gu
  • Xiaoyi Yan
  • He Liu
  • Nannan Lu
  • Siyuan Zhang
  • Zhiquan ZhangEmail author
  • Ming YangEmail author
Original Paper


An antifouling electrochemical aptasensor for ATP is described that has a zwitterionic self-assembled sensing interface on a glassy carbon electrode modified with a reduced graphene oxide carbon nanofiber (GO-CNF). The GO-CNF was first modified by self-polymerization of dopamine which provided a platform for simultaneously self-assembly of the ATP aptamer and cysteine. By using hexacyanoferrate as the electrochemical probe, in the presence of ATP, the aptamer strands fold around ATP molecules, thus leading to the variation of the electrochemical signal. The aptasensor has a linear response in the 0.1 pM to 5 nM ATP concentration range, and a 13 fM lower detection limit. The electrode is strongly resistant to nonspecific adsorption and biofouling. This enabled the detection of ATP even in spiked human plasma.

Graphical abstract

An antifouling electrochemical aptasensor employing reduced graphene oxide carbon nanofiber as conductive substrate and zwitterionic cysteine as antifouling material for adenosine triphosphate detection.


Disease biomarkers Cysteine Biocompatibility Impedance Mixed self-assembly 



This work acknowledges support from the National Natural Science Foundation of China (No. 21375045) and Natural Science Foundation of Jilin Province (No. 20180101195JC).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3343_MOESM1_ESM.docx (2.4 mb)
ESM 1 (DOCX 2.44 mb)


  1. 1.
    Deng J, Wang K, Wang M, Yu P, Mao L (2017) Mitochondria targeted nanoscale Zeolitic imidazole Framework-90 for ATP imaging in live cells. J Am Chem Soc 139:5877–5882CrossRefGoogle Scholar
  2. 2.
    Qu F, Sun C, Lv X, You J (2018) A terbium-based metal-organic framework@gold nanoparticle system as a fluorometric probe for aptamer based determination of adenosine triphosphate. Microchim Acta 185:359CrossRefGoogle Scholar
  3. 3.
    Liu X, Lin B, Yu Y, Cao Y, Guo M (2018) A multifunctional probe based on the use of labeled aptamer and magnetic nanoparticles for fluorometric determination of adenosine 5 '-triphosphate. Microchim Acta 185Google Scholar
  4. 4.
    Cheng X, Cen Y, Xu G, Wei F, Shi M, Xu X, Sohail M, Hu Q (2018) Aptamer based fluorometric determination of ATP by exploiting the FRET between carbon dots and graphene oxide. Microchim Acta 185:144CrossRefGoogle Scholar
  5. 5.
    El Kurdi R, Patra D (2018) Nanosensing of ATP by fluorescence recovery after surface energy transfer between rhodamine B and curcubit 7 uril-capped gold nanoparticles. Microchim Acta 185:349CrossRefGoogle Scholar
  6. 6.
    Alberti D, van't Erve M, Stefania R, Ruggiero MR, Tapparo M, Geninatti Crich S, Aime S (2014) A quantitative Relaxometric version of the ELISA test for the measurement of cell surface biomarkers. Angew Chem Int Ed 53:3488–3491CrossRefGoogle Scholar
  7. 7.
    Sun F, Ella-Menye J-R, Galvan DD, Bai T, Hung H-C, Chou Y-N, Zhang P, Jiang S, Yu Q (2015) Stealth surface modification of surface-enhanced Raman scattering substrates for sensitive and accurate detection in protein solutions. ACS Nano 9:2668–2676CrossRefGoogle Scholar
  8. 8.
    He L, Pagneux Q, Larroulet I, Serrano AY, Pesquera A, Zurutuza A, Mandler D, Boukherroub R, Szunerits S (2017) Label-free femtomolar cancer biomarker detection in human serum using graphene-coated surface plasmon resonance chips. Biosens Bioelectron 89:606–611CrossRefGoogle Scholar
  9. 9.
    Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510CrossRefGoogle Scholar
  10. 10.
    Bozokalfa G, Akbulut H, Demir B, Guler E, Gumus ZP, Odaci Demirkol D, Aldemir E, Yamada S, Endo T, Coskunol H, Timur S, Yagci Y (2016) Polypeptide functional surface for the aptamer immobilization: electrochemical cocaine biosensing. Anal Chem 88:4161–4167CrossRefGoogle Scholar
  11. 11.
    Park KS (2018) Nucleic acid aptamer-based methods for diagnosis of infections. Biosens Bioelectron 102:179–188CrossRefGoogle Scholar
  12. 12.
    Rapini R, Marrazza G (2017) Electrochemical aptasensors for contaminants detection in food and environment: recent advances. Bioelectrochemistry 118:47–61CrossRefGoogle Scholar
  13. 13.
    Farzin L, Shamsipur M, Samandari L, Sheibani S (2018) Advances in the design of nanomaterial-based electrochemical affinity and enzymatic biosensors for metabolic biomarkers: a review. Microchim Acta 185:276CrossRefGoogle Scholar
  14. 14.
    Zhang X, Song C, Yang K, Hong W, Lu Y, Yu P, Mao L (2018) Photoinduced regeneration of an aptamer-based electrochemical sensor for sensitively detecting adenosine triphosphate. Anal Chem 90:4968–4971CrossRefGoogle Scholar
  15. 15.
    Nowinski AK, Sun F, White AD, Keefe AJ, Jiang S (2012) Sequence, structure, and function of peptide self-assembled monolayers. J Am Chem Soc 134:6000–6005CrossRefGoogle Scholar
  16. 16.
    Schlenoff JB (2014) Zwitteration: coating surfaces with Zwitterionic functionality to reduce nonspecific adsorption. Langmuir 30:9625–9636CrossRefGoogle Scholar
  17. 17.
    Shih Y-J, Chang Y, Quemener D, Yang H-S, Jhong J-F, Ho F-M, Higuchi A, Chang Y (2014) Hemocompatibility of Polyampholyte copolymers with well-defined charge Bias in human blood. Langmuir 30:6489–6496CrossRefGoogle Scholar
  18. 18.
    Wang P, Yang J, Zhou B, Hu Y, Xing L, Xu F, Shen M, Zhang G, Shi X (2017) Antifouling manganese oxide nanoparticles: synthesis, characterization, and applications for enhanced MR imaging of tumors. ACS Appl Mater Interfaces 9:47–53CrossRefGoogle Scholar
  19. 19.
    Lin P, Chuang T-L, Chen PZ, Lin C-W, Gu FX (2019) Low-fouling characteristics of ultrathin Zwitterionic cysteine SAMs. Langmuir 35:1756–1767CrossRefGoogle Scholar
  20. 20.
    Shevate R, Kumar M, Karunakaran M, Hedhili MN, Peinemann K-V (2017) Polydopamine/cysteine surface modified isoporous membranes with self-cleaning properties. J Membr Sci 529:185–194CrossRefGoogle Scholar
  21. 21.
    Li P, Cai X, Wang D, Chen S, Yuan J, Li L, Shen J (2013) Hemocompatibility and anti-biofouling property improvement of poly(ethylene terephthalate) via self-polymerization of dopamine and covalent graft of zwitterionic cysteine. Colloids Surf B: Biointerfaces 110:327–332CrossRefGoogle Scholar
  22. 22.
    Zhu C, Yang G, Li H, Du D, Lin Y (2015) Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal Chem 87:230–249CrossRefGoogle Scholar
  23. 23.
    Liu Y, Ai K, Lu L (2014) Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem Rev 114:5057–5115CrossRefGoogle Scholar
  24. 24.
    Mo R, Jiang T, DiSanto R, Tai W, Gu Z (2014) ATP-triggered anticancer drug delivery. Nat Commun 5:3364CrossRefGoogle Scholar
  25. 25.
    Biniuri Y, Albada B, Willner I (2018) Probing ATP/ATP-aptamer or ATP-aptamer mutant complexes by microscale thermophoresis and molecular dynamics simulations: discovery of an ATP-aptamer sequence of superior binding properties. J Phys Chem B 122:9102–9109CrossRefGoogle Scholar
  26. 26.
    Li D, Muller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105CrossRefGoogle Scholar
  27. 27.
    Wang G, Xu Q, Liu L, Su X, Lin J, Xu G, Luo X (2017) Mixed self-assembly of polyethylene glycol and aptamer on Polydopamine surface for highly sensitive and low-fouling detection of adenosine triphosphate in complex media. ACS Appl Mater Interfaces 9:31153–31160CrossRefGoogle Scholar
  28. 28.
    Wen Y-F, Cao X, Yang Y-G, Li H, Guo J-Q, Liu L (2008) Carbonization of pre-oxidized polyacrylonitrile fibers. Carbon 46:2CrossRefGoogle Scholar
  29. 29.
    Wang G, Han R, Su X, Li Y, Xu G, Luo X (2017) Zwitterionic peptide anchored to conducting polymer PEDOT for the development of antifouling and ultrasensitive electrochemical DNA sensor. Biosens Bioelectron 92:396–401CrossRefGoogle Scholar
  30. 30.
    Labib M, Sargent EH, Kelley SO (2016) Electrochemical methods for the analysis of clinically relevant biomolecules. Chem Rev 116:9001–9090CrossRefGoogle Scholar
  31. 31.
    Llaudet E, Hatz S, Droniou M, Dale N (2005) Microelectrode biosensor for real-time measurement of ATP in biological tissue. Anal Chem 77:3267–3273CrossRefGoogle Scholar
  32. 32.
    Lu L, Si JC, Gao ZF, Zhang Y, Lei JL, Luo HQ, Li NB (2015) Highly selective and sensitive electrochemical biosensor for ATP based on the dual strategy integrating the cofactor-dependent enzymatic ligation reaction with self-cleaving DNAzyme-amplified electrochemical detection. Biosens Bioelectron 63:14–20CrossRefGoogle Scholar
  33. 33.
    Lu L-M, Zhang X-B, Kong R-M, Yang B, Tan W (2011) A ligation-triggered DNAzyme Cascade for amplified fluorescence detection of biological small molecules with zero-background signal. J Am Chem Soc 133:11686–11691CrossRefGoogle Scholar
  34. 34.
    Iliuk AB, Hu L, Tao WA (2011) Aptamer in bioanalytical applications. Anal Chem 83:4440–4452CrossRefGoogle Scholar
  35. 35.
    Wang G, Su X, Xu Q, Xu G, Lin J, Luo X (2018) Antifouling aptasensor for the detection of adenosine triphosphate in biological media based on mixed self-assembled aptamer and zwitterionic peptide. Biosens Bioelectron 101:129–134CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Tingting Zhang
    • 1
  • Haixin Xu
    • 1
  • Zhiqian Xu
    • 1
  • Yue Gu
    • 1
  • Xiaoyi Yan
    • 1
  • He Liu
    • 1
  • Nannan Lu
    • 1
  • Siyuan Zhang
    • 2
  • Zhiquan Zhang
    • 1
    Email author
  • Ming Yang
    • 3
    Email author
  1. 1.College of ChemistryJilin UniversityChangchunChina
  2. 2.Experimental School of the Affiliated Middle School to Jilin UniversityChangchunChina
  3. 3.Department of Breast Surgery, First HospitalJilin UniversityChangchunChina

Personalised recommendations