Microchimica Acta

, 186:227 | Cite as

A fluorometric paper test for chromium(VI) based on the use of N-doped carbon dots

  • Kun-Hua Lu
  • Jia-Hui Lin
  • Cheng-Yu Lin
  • Chien-Fu ChenEmail author
  • Yi-Chun YehEmail author
Original Paper


Water-soluble nitrogen-doped carbon quantum dots (C-dots) were fabricated by microwave-induced decomposition of the precursor materials citric acid and N,N′-bis(2-aminoethyl)-1,2-ethanediamine. The C-dots were placed on portable paper strips with novel origami designs to simplified user operations. The intensity of the blue fluorescence, best measured at excitation/emission wavelengths of 330/420 nm, depends on the pH value in the range from pH 2 to 12. The C-dots on the paper stripe are shown to be a sensitive fluorescent probe for chromium(VI) via an inner filter effect. Response is linear in the 0.08 to 1 mM concentration range, and the detection limit (at S/N = 3) is 0.14 mM. The test was applied to the determination of chromium(VI) in (spiked) environmental water samples.

Graphical abstract

Schematic presentation of the water-soluble nitrogen-doped carbon dots (C-dots) as a fluorescent probe for Cr6+ based on an inner filter effect. The three-dimensional paper analytical device integrating C-dots was applied to the determination of Cr6+ in (spiked) environmental water samples.


Carbon dots Three-dimensional paper analytical devices Chromium(VI) Origami Paper microfluidic Fluorescence Environmental analysis 



This work was funded by the Ministry of Science and Technology of Taiwan under the project number 107-2113-M-003-013-MY3. We thank Yi-Ju Chou for helpful discussions.

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3337_MOESM1_ESM.pdf (1.1 mb)
ESM 1 (PDF 1.07 mb)


  1. 1.
    Li S, Huang J, Chen Z, Chen G, Lai Y (2017) A review on special wettability textiles: theoretical models, fabrication technologies and multifunctional applications. J Mater Chem A 5(1):31–55CrossRefGoogle Scholar
  2. 2.
    Chen G-H, Chen W-Y, Yen Y-C, Wang C-W, Chang H-T, Chen C-F (2014) Detection of mercury (II) ions using colorimetric gold nanoparticles on paper-based analytical devices. Anal Chem 86(14):6843–6849CrossRefGoogle Scholar
  3. 3.
    Faham S, Khayatian G, Golmohammadi H, Ghavami R (2018) A paper-based optical probe for chromium by using gold nanoparticles modified with 2,2-thiodiacetic acid and smartphone camera readout. Microchim Acta 185(8):374CrossRefGoogle Scholar
  4. 4.
    Chatterjee S, Sinha Mahapatra P, Ibrahim A, Ganguly R, Yu L, Dodge R, Megaridis C (2018) Precise liquid transport on and through thin porous materials. Langmuir 34(8):2865–2875CrossRefGoogle Scholar
  5. 5.
    Zang D, Ge L, Yan M, Song X, Yu J (2012) Electrochemical immunoassay on a 3D microfluidic paper-based device. Chem Commun 48(39):4683–4685CrossRefGoogle Scholar
  6. 6.
    Yan J, Ge L, Song X, Yan M, Ge S, Yu J (2012) Paper-based Electrochemiluminescent 3D Immunodevice for lab-on-paper, specific, and sensitive point-of-care testing. Chem Eur J 18(16):4938–4945CrossRefGoogle Scholar
  7. 7.
    Qu S, Wang X, Lu Q, Liu X, Wang L (2012) A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots. Angew Chem Int Edit 51(49):12215–12218CrossRefGoogle Scholar
  8. 8.
    Jiang J, He Y, Li S, Cui H (2012) Amino acids as the source for producing carbon nanodots: microwave assisted one-step synthesis, intrinsic photoluminescence property and intense chemiluminescence enhancement. Chem Commun 48(77):9634–9636CrossRefGoogle Scholar
  9. 9.
    Zhang J, Chen X, Li Y, Han S, Du Y, Liu H (2018) A nitrogen doped carbon quantum dot-enhanced chemiluminescence method for the determination of Mn2+. Anal Methods 10(5):541–547CrossRefGoogle Scholar
  10. 10.
    Zhou L, Lin Y, Huang Z, Ren J, Qu X (2012) Carbon nanodots as fluorescence probes for rapid, sensitive, and label-free detection of Hg2+ and biothiols in complex matrices. Chem Commun 48(8):1147–1149CrossRefGoogle Scholar
  11. 11.
    Sha Y, Lou J, Bai S, Wu D, Liu B, Ling Y (2013) Hydrothermal synthesis of nitrogen-containing carbon nanodots as the high-efficient sensor for copper (II) ions. Mater Res Bull 48(4):1728–1731CrossRefGoogle Scholar
  12. 12.
    Qu K, Wang J, Ren J, Qu X (2013) Carbon dots prepared by hydrothermal treatment of dopamine as an effective fluorescent sensing platform for the label-free detection of iron (III) ions and dopamine. Chem Eur J 19(22):7243–7249CrossRefGoogle Scholar
  13. 13.
    Kumar A, Chowdhuri AR, Laha D, Mahto TK, Karmakar P, Sahu SK (2017) Green synthesis of carbon dots from Ocimum sanctum for effective fluorescent sensing of Pb2+ ions and live cell imaging. Sensors Actuators B Chem 242:679–686CrossRefGoogle Scholar
  14. 14.
    Amjadi M, Manzoori JL, Hallaj T, Sorouraddin MH (2014) Strong enhancement of the chemiluminescence of the cerium(IV)-thiosulfate reaction by carbon dots, and its application to the sensitive determination of dopamine. Microchim Acta 181(5):671–677CrossRefGoogle Scholar
  15. 15.
    Zuo P, Lu X, Sun Z, Guo Y, He HJ (2016) A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots. Microchim Acta 183(2):519–542CrossRefGoogle Scholar
  16. 16.
    Nagajyoti P, Lee K, Sreekanth T (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8(3):199–216CrossRefGoogle Scholar
  17. 17.
    Oliveira H (2012). Chromium as an environmental pollutant: insights on induced plant toxicity. J Bot 2012Google Scholar
  18. 18.
    Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37(1):123–150CrossRefGoogle Scholar
  19. 19.
    Nriagu JO (1988) Production and uses of chromium. Chromium in the natural human environments 20:81–104Google Scholar
  20. 20.
    Williams C, David DJ, Iismaa OJT (1962) The determination of chromic oxide in faeces samples by atomic absorption spectrophotometry. J Agric Sci 59(3):381–385CrossRefGoogle Scholar
  21. 21.
    Sperling M, Xu S, Welz B (1992) Determination of chromium (III) and chromium (VI) in water using flow injection on-line preconcentration with selective adsorption on activated alumina and flame atomic absorption spectrometric detection. Anal Chem 64(24):3101–3108CrossRefGoogle Scholar
  22. 22.
    Barnowski C, Jakubowski N, Stuewer D, Broekaert JA (1997) Speciation of chromium by direct coupling of ion exchange chromatography with inductively coupled plasma mass spectrometry. J Anal Atom Spectrom 12(10):1155–1161CrossRefGoogle Scholar
  23. 23.
    Hirata S, Honda K, Shikino O, Maekawa N, Aihara MJSAPBAS (2000) Determination of chromium (III) and total chromium in seawater by on-line column preconcentration inductively coupled plasma mass spectrometry. Spectrochim Acta B 55(7):1089–1099CrossRefGoogle Scholar
  24. 24.
    Jung JY, Han SJ, Chun J, Lee C, Yoon J (2012) New thiazolothiazole derivatives as fluorescent chemosensors for Cr3+ and Al3+. Dyes Pigments 94(3):423–426CrossRefGoogle Scholar
  25. 25.
    Wan Y, Guo Q, Wang X, AJAca X (2010) Photophysical properties of rhodamine isomers: a two-photon excited fluorescent sensor for trivalent chromium cation (Cr3+). Anal Chim Acta 665(2):215–220CrossRefGoogle Scholar
  26. 26.
    Zhou Y, Zhang J, Zhang L, Zhang Q, Ma T, Niu J (2013) A rhodamine-based fluorescent enhancement chemosensor for the detection of Cr3+ in aqueous media. Dyes Pigments 97(1):148–154CrossRefGoogle Scholar
  27. 27.
    Zheng M, Xie Z, Qu D, Li D, Du P, Jing X, Sun Z (2013) On–off–on fluorescent carbon dot nanosensor for recognition of chromium (VI) and ascorbic acid based on the inner filter effect. ACS Appl Mater Interfaces 5(24):13242–13247CrossRefGoogle Scholar
  28. 28.
    Hallam PM, Kampouris DK, Kadara RO, Banks CE (2010) Graphite screen printed electrodes for the electrochemical sensing of chromium (VI). Analyst 135(8):1947–1952CrossRefGoogle Scholar
  29. 29.
    Jena BK, Raj CRJT (2008) Highly sensitive and selective electrochemical detection of sub-ppb level chromium (VI) using nano-sized gold particle. Talanta 76(1):161–165CrossRefGoogle Scholar
  30. 30.
    Kochmann S, Hirsch T, Wolfbeis OS (2012) The pH dependence of the total fluorescence of graphite oxide. J Fluoresc 22(3):849–855CrossRefGoogle Scholar
  31. 31.
    Qu S, Chen H, Zheng X, Cao J, Liu X (2013) Ratiometric fluorescent nanosensor based on water soluble carbon nanodots with multiple sensing capacities. Nanoscale 5(12):5514–5518CrossRefGoogle Scholar
  32. 32.
    Mohan D, Pittman CU (2006) Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. J Hazard Mater 137(2):762–811CrossRefGoogle Scholar
  33. 33.
    Bu L, Peng J, Peng H, Liu S, Xiao H, Liu D, Pan Z, Chen Y, Chen F, He Y (2016) Fluorescent carbon dots for the sensitive detection of Cr(vi) in aqueous media and their application in test papers. RSC Adv 6(98):95469–95475CrossRefGoogle Scholar
  34. 34.
    Pacquiao MR, de Luna MDG, Thongsai N, Kladsomboon S, Paoprasert P (2018) Highly fluorescent carbon dots from enokitake mushroom as multi-faceted optical nanomaterials for Cr6+ and VOC detection and imaging applications. Appl Surf Sci 453:192–203CrossRefGoogle Scholar
  35. 35.
    Apilux A, Dungchai W, Siangproh W, Praphairaksit N, Henry CS, Chailapakul O (2010) Lab-on-paper with dual electrochemical/colorimetric detection for simultaneous determination of gold and iron. Anal Chem 82(5):1727–1732CrossRefGoogle Scholar
  36. 36.
    Ge L, Wang S, Song X, Ge S, Yu J (2012) 3D origami-based multifunction-integrated immunodevice: low-cost and multiplexed sandwich chemiluminescence immunoassay on microfluidic paper-based analytical device. Lab Chip 12(17):3150–3158CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryNational Taiwan Normal UniversityTaipeiTaiwan
  2. 2.Institute of Applied MechanicsNational Taiwan UniversityTaipeiTaiwan

Personalised recommendations