Advertisement

Microchimica Acta

, 186:222 | Cite as

Hierarchical Co3O4@NiMoO4 core-shell nanowires for chemiresistive sensing of xylene vapor

  • Fengdong Qu
  • Shendan Zhang
  • Bingxue Zhang
  • Xinxin Zhou
  • Shiyu Du
  • Cheng-Te Lin
  • Shengping RuanEmail author
  • Minghui YangEmail author
Original Paper
  • 63 Downloads

Abstract

Hierarchical Co3O4@NiMoO4 core-shell nanowires (NWs) were synthesized utilizing a two-step hydrothermal method. The NWs show a high chemiresistive response (at a temperature of 255 °C) to xylene, with an Rgas/Rair ratio of 24.6 at 100 ppm xylene, while the response towards toluene, benzene, ethanol, and acetone, CO, H2S and NO2 is much weaker. In contrast, pure Co3O4 nanowires exhibit weak responses to all the vapors/gases and poor selectivity. The new NW sensor displays an almost linear response (1–100 ppm) to xylene and a lower detection limit of 424 ppb. The remarkable gas sensing characteristics are attributed to the synergistic catalytic effect and the formation of a heterostructure between Co3O4 and NiMoO4.

Graphical abstract

Schematic presentation of a xylene vapor chemiresistive sensor based on Co3O4@NiMoO4 core-shell nanowires. The Co3O4@NiMoO4 core-shell nanowires-based sensor exhibits a high response (24.6) to 100 ppm xylene at 255 °C and high response/recovery speed (13–15 and 25–29 s).

Keywords

Gas sensing Heterostructure Partial catalytic oxidation Cobalt oxide Nickel molybdenum oxide Synergistic effect Hydrothermal synthesis Semiconductors 

Notes

Acknowledgments

This work is supported by National Key Research and Development Plan (Grant No. 2016YFB0101205), Key Program of the Chinese Academy of Sciences (Grant No. KFZD-SW-320) and Opened Fund of the State Key Laboratory on Integrated Optoelectronics (Grant No. IOSKL2017KF08M). M. Yang would like to thank for the Ningbo 3315 program.

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3335_MOESM1_ESM.docx (493 kb)
ESM 1 (DOCX 492 kb)

References

  1. 1.
    Joshi N, Hayasaka T, Liu Y, Liu H, Oliveira ON, Lin L (2018) A review on chemiresistive room temperature gas sensors based on metal oxide nanostructures, graphene and 2D transition metal dichalcogenides. Microchim Acta 185(4):213Google Scholar
  2. 2.
    Malik R, Tomer VK, Joshi N, Dankwort T, Lin L, Kienle L (2018) Au–TiO2-loaded cubic g-C3N4 Nanohybrids for photocatalytic and volatile organic amine sensing applications. ACS Appl Mater Interfaces 10(40):34087–34097PubMedGoogle Scholar
  3. 3.
    Miller DR, Akbar SA, Morris PA (2014) Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sensors Actuators B Chem 204:250–272Google Scholar
  4. 4.
    Sun C, Su X, Xiao F, Niu C, Wang J (2011) Synthesis of nearly monodisperse Co3O4 nanocubes via a microwave-assisted solvothermal process and their gas sensing properties. Sensors Actuators B Chem 157(2):681–685Google Scholar
  5. 5.
    Bekermann D, Gasparotto A, Barreca D, Maccato C, Comini E, Sada C, Sberveglieri G, Devi A, Fischer RA (2012) Co3O4/ZnO nanocomposites: from plasma synthesis to gas sensing applications. ACS Appl Mater Interfaces 4(2):928–934PubMedGoogle Scholar
  6. 6.
    Jeong H-M, Kim J-H, Jeong S-Y, Kwak C-H, Lee J-H (2016) Co3O4–SnO2 hollow Heteronanostructures: facile control of gas selectivity by compositional tuning of sensing materials via galvanic replacement. ACS Appl Mater Interfaces 8(12):7877–7883PubMedGoogle Scholar
  7. 7.
    Liang YQ, Cui ZD, Zhu SL, Li ZY, Yang XJ, Chen YJ, Ma JM (2013) Design of a highly sensitive ethanol sensor using a nano-coaxial p-Co3O4/n-TiO2 heterojunction synthesized at low temperature. Nanoscale 5(22):10916–10926PubMedGoogle Scholar
  8. 8.
    Qu F, Liu J, Wang Y, Wen S, Chen Y, Li X, Ruan S (2014) Hierarchical Fe3O4@Co3O4 core–shell microspheres: preparation and acetone sensing properties. Sensors Actuators B Chem 199:346–353Google Scholar
  9. 9.
    Qu F, Jiang H, Yang M (2017) MOF-derived Co3O4/NiCo2O4 double-shelled nanocages with excellent gas sensing properties. Mater Lett 190:75–78Google Scholar
  10. 10.
    Shengjie P, Linlin L, Bin WH, Srinivasan M, Wen LX (2015) Controlled growth of NiMoO4 Nanosheet and Nanorod arrays on various conductive substrates as advanced electrodes for asymmetric supercapacitors. Adv Energy Mater 5(2):1401172Google Scholar
  11. 11.
    Xiao K, Xia L, Liu G, Wang S, Ding L-X, Wang H (2015) Honeycomb-like NiMoO4 ultrathin nanosheet arrays for high-performance electrochemical energy storage. J Mater Chem A 3(11):6128–6135Google Scholar
  12. 12.
    Tong Y, Chen P, Zhang M, Zhou T, Zhang L, Chu W, Wu C, Xie Y (2018) Oxygen vacancies confined in nickel molybdenum oxide porous nanosheets for promoted electrocatalytic urea oxidation. ACS Catal 8(1):1–7Google Scholar
  13. 13.
    Kim B-Y, Ahn JH, Yoon J-W, Lee C-S, Kang YC, Abdel-Hady F, Wazzan AA, Lee J-H (2016) Highly selective xylene sensor based on NiO/NiMoO4 nanocomposite hierarchical spheres for indoor air monitoring. ACS Appl Mater Interfaces 8(50):34603–34611PubMedGoogle Scholar
  14. 14.
    Barsan N, Koziej D, Weimar U (2007) Metal oxide-based gas sensor research: how to? Sensors Actuators B Chem 121(1):18–35Google Scholar
  15. 15.
    Choi KJ, Jang HW (2010) One-dimensional oxide nanostructures as gas-sensing materials: review and issues. Sensors 10(4):4083–4099PubMedGoogle Scholar
  16. 16.
    Huang B, Zhang Z, Zhao C, Cairang L, Bai J, Zhang Y, Mu X, Du J, Wang H, Pan X, Zhou J, Xie E (2018) Enhanced gas-sensing performance of ZnO@In2O3 core@shell nanofibers prepared by coaxial electrospinning. Sensors Actuators B Chem 255:2248–2257Google Scholar
  17. 17.
    Young-Jin C, In-Sung H, Jae-Gwan P, Kyoung Jin C, Jae-Hwan P, Jong-Heun L (2008) Novel fabrication of an SnO2 nanowire gas sensor with high sensitivity. Nanotechnology 19(9):095508Google Scholar
  18. 18.
    Wang Y, Qu F, Liu J, Wang Y, Zhou J, Ruan S (2015) Enhanced H2S sensing characteristics of CuO-NiO core-shell microspheres sensors. Sensors Actuators B Chem 209:515–523Google Scholar
  19. 19.
    Petitto SC, Marsh EM, Carson GA, Langell MA (2008) Cobalt oxide surface chemistry: the interaction of CoO(100), Co3O4 (110) and Co3O4 (111) with oxygen and water. J Mol Catal A Chem 281(1):49–58Google Scholar
  20. 20.
    Peck MA, Langell MA (2012) Comparison of Nanoscaled and bulk NiO structural and environmental characteristics by XRD, XAFS, and XPS. Chem Mater 24(23):4483–4490Google Scholar
  21. 21.
    Varghese B, Teo CH, Reddy MV, Chowdari BVR, Wee ATS, Tan VBC, Lim CT, Sow CH (2007) Co3O4 nanostructures with different morphologies and their field-emission properties. Adv Funct Mater 17(12):1932–1939Google Scholar
  22. 22.
    Lan K, Liu Y, Zhang W, Liu Y, Elzatahry A, Wang R, Xia Y, Al-Dhayan D, Zheng N, Zhao D (2018) Uniform ordered two-dimensional mesoporous TiO2 Nanosheets from hydrothermal-induced solvent-confined Monomicelle assembly. J Am Chem Soc 140(11):4135–4143PubMedGoogle Scholar
  23. 23.
    Światowska-Mrowiecka J, de Diesbach S, Maurice V, Zanna S, Klein L, Briand E, Vickridge I, Marcus P (2008) Li-ion intercalation in thermal oxide thin films of MoO3 as studied by XPS, RBS, and NRA. J Phys Chem C 112(29):11050–11058Google Scholar
  24. 24.
    Jeong H-M, Kim H-J, Rai P, Yoon J-W, Lee J-H (2014) Cr-doped Co3O4 nanorods as chemiresistor for ultraselective monitoring of methyl benzene. Sensors Actuators B Chem 201:482–489Google Scholar
  25. 25.
    Nguyen H, El-Safty SA (2011) Meso- and macroporous Co3O4 Nanorods for effective VOC gas sensors. J Phys Chem C 115(17):8466–8474Google Scholar
  26. 26.
    Liu L, Zhong Z, Wang Z, Wang L, Li S, Liu Z, Han Y, Tian Y, Wu P, Meng X (2011) Synthesis, characterization, and m-xylene sensing properties of co–ZnO composite nanofibers. J Am Ceram Soc 94(10):3437–3441Google Scholar
  27. 27.
    Qu F, Feng C, Li C, Li W, Wen S, Ruan S, Zhang H (2014) Preparation and xylene-sensing properties of Co3O4 nanofibers. Int J Appl Ceram Technol 11(4):619–625Google Scholar
  28. 28.
    Sun Y-F, Liu S-B, Meng F-L, Liu J-Y, Jin Z, Kong L-T, Liu J-H (2012) Metal oxide nanostructures and their gas sensing properties: a review. Sensors 12(3):2610–2631PubMedGoogle Scholar
  29. 29.
    Qu F, Yuan Y, Yang M (2017) Programmed synthesis of Sn3N4 nanoparticles via a soft chemistry approach with urea: application for ethanol vapor sensing. Chem Mater 29(3):969–974Google Scholar
  30. 30.
    Qu F, Yuan Y, Guarecuco R, Yang M (2016) Low working-temperature acetone vapor sensor based on zinc nitride and oxide hybrid composites. Small 12(23):3128–3133PubMedGoogle Scholar
  31. 31.
    Yu T, Zhu YW, Xu XJ, Shen ZX, Chen P, Lim CT, Thong JTL, Sow CH (2005) Controlled growth and field-emission properties of cobalt oxide Nanowalls. Adv Mater 17(13):1595–1599Google Scholar
  32. 32.
    Klingenberg B, Grellner F, Borgmann D, Wedler G (1993) Oxygen adsorption and oxide formation on Co(112̄0). Surf Sci 296(3):374–382Google Scholar
  33. 33.
    Grzybowska B, Czerwenka M, Sloczynski J (1987) Oxidation of some substituted toluenes on mixed oxide systems. Catal Today 1(1):157–165Google Scholar
  34. 34.
    Lezla O, Bordes E, Courtine P, Hecquet G (1997) Synergetic effects in the Ni-Mo-O system: influence of preparation on catalytic performance in the oxidative dehydrogenation of propane. J Catal 170(2):346–356Google Scholar
  35. 35.
    Pillay B, Mathebula MR, Friedrich HB (2011) The oxidative dehydrogenation of n-hexane over a β-NiMoO4 catalyst. Catal Lett 141(9):1297–1304Google Scholar
  36. 36.
    Kim H-J, Yoon J-W, Choi K-I, Jang HW, Umar A, Lee J-H (2013) Ultraselective and sensitive detection of xylene and toluene for monitoring indoor air pollution using Cr-doped NiO hierarchical nanostructures. Nanoscale 5(15):7066–7073PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Fengdong Qu
    • 1
    • 2
  • Shendan Zhang
    • 2
  • Bingxue Zhang
    • 2
  • Xinxin Zhou
    • 2
  • Shiyu Du
    • 2
  • Cheng-Te Lin
    • 2
  • Shengping Ruan
    • 1
    Email author
  • Minghui Yang
    • 2
    Email author
  1. 1.College of Electronic Science and EngineeringJilin UniversityChangchunPeople’s Republic of China
  2. 2.Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboChina

Personalised recommendations