Microchimica Acta

, 186:221 | Cite as

A magnetic nanoparticle based immunoassay for alternariol monomethyl ether using hydrogen peroxide-mediated fluorescence quenching of CdTe quantum dots

  • Yan Man
  • Xinxin Jin
  • Hailong Fu
  • Ligang PanEmail author
Original Paper


The authors describe a fluorometric immunoassay for alternariol monomethyl ether (AME). It is making use of magnetic nanoparticles and quenching of the fluorescence of mercaptopropionic acid-capped CdTe quantum dots (MPA-CdTe QDs) by H2O2. Catalase (CAT) was labeled with AME as a competitive antigen to competitively bind to magnetic nanoparticles carrying monoclonal antibodies (mAbs) with free AME in samples. The effects of the concentration and pH value of buffer, the concentrations of H2O2 and CAT-AME, and the incubation time of H2O2 and MPA-CdTe QDs were optimized. Under optimal conditions and in combination with magnetic separation, the quenching of the fluorescence of the MPA-CdTe QDs (excitation at 310 nm, emission at 599 nm) can be used to quantify AME with a detection limit of 0.25 pg·mL−1 and the linear range from 0.25 to 7.5 pg·mL−1. The immunoassay also has a lower cross-reactivity to AME analogues. It was evaluated by analyzing fruit samples spiked with AME. The recoveries from spiked fruits ranged from 87.2% to 92.0%.

Graphical abstract

Schematic presentation of a fluorometric immunoassay for alternariol monomethyl ether (AME) using magnetic nanoparticles (MNPs) for the rapid separation and purification. The method is based on quenching of the fluorescence of mercaptopropionic acid-capped CdTe quantum dots (MPA-CdTe QDs) by H2O2 for the fluorescence signal output, and on the use of catalase (CAT) with its high catalytic activity.


Alternaria Mycotoxin Nanomaterial Catalase Sensitive detection H2O2 Competitive assay Food Sample preparation 



This work was supported by the National Natural Science Foundation of China (31801618) and Beijing Municipal Excellent Talents Foundation (2016000020060G127).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3334_MOESM1_ESM.docx (832 kb)
ESM 1 (DOCX 832 kb)


  1. 1.
    Alexander J, Benford D, Boobis A, Ceccatelli S, Cottrill B, Cravedi J, Di Domenico A, Doerge D, Dogliotti E, Edler L (2011) Scientific opinion on the risks for animal and public health related to the presence of Alternaria toxins in feed and food. EFSA J 9:2407–2504. CrossRefGoogle Scholar
  2. 2.
    Man Y, Liang G, Li A, Pan L (2017) Analytical methods for the determination of alternaria mycotoxins. Chromatographia 80:9–22. CrossRefGoogle Scholar
  3. 3.
    Sivagnanam K, Komatsu E, Rampitsch C, Perreault H, Gräfenhan T (2017) Rapid screening of Alternaria mycotoxins using MALDI-TOF mass spectrometry. J Sci Food Agric 97:357–361. CrossRefPubMedGoogle Scholar
  4. 4.
    Zhou J, Xu J, Cai Z, Huang B, Jin M, Ren Y (2017) Simultaneous determination of five Alternaria toxins in cereals using QuEChERS-based methodology. J Chromatogr B 1068-1069:15–23. CrossRefGoogle Scholar
  5. 5.
    Puntscher H, Kütt M, Skrinjar P, Mikula H, Podlech J, Fröhlich J, Marko D, Warth B (2018) Tracking emerging mycotoxins in food: development of an LC-MS/MS method for free and modified Alternaria toxins. Anal Bioanal Chem 410:4481–4494. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Viswambari Devi R, Doble M, Verma RS (2015) Nanomaterials for early detection of cancer biomarker with special emphasis on gold nanoparticles in immunoassays/sensors. Biosens Bioelectron 68:688–698. CrossRefPubMedGoogle Scholar
  7. 7.
    Wang X, Niessner R, Tang D, Knopp D (2016) Nanoparticle-based immunosensors and immunoassays for aflatoxins. Anal Chim Acta 912:10–23. CrossRefPubMedGoogle Scholar
  8. 8.
    Wang J, Peng T, Zhang X, Yao K, Ke Y, Shao B, Wang Z, Shen J, Jiang H (2018) A novel hapten and monoclonal antibody-based indirect competitive ELISA for simultaneous analysis of alternariol and alternariol monomethyl ether in wheat. Food Control 94:65–70. CrossRefGoogle Scholar
  9. 9.
    Man Y, Liang G, Jia F, Li A, Fu H, Wang M, Pan L (2017) Development of an immunochromatographic strip test for the rapid detection of alternariol monomethyl ether in fruit. Toxins 9:152. CrossRefPubMedCentralGoogle Scholar
  10. 10.
    Lan L, Yao Y, Ping J, Ying Y (2017) Recent progress in nanomaterial-based optical aptamer assay for the detection of food chemical contaminants. ACS Appl Mater Interfaces 9:23287–23301. CrossRefPubMedGoogle Scholar
  11. 11.
    Schiffman HRC, Balakrishna JD (2018) Quantum dots as fluorescent probes: synthesis, surface chemistry, energy transfer mechanisms, and applications. Sensors Actuators B Chem 258:1191–1214. CrossRefGoogle Scholar
  12. 12.
    Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5:763–775. CrossRefPubMedGoogle Scholar
  13. 13.
    Foubert A, Beloglazova NV, De Saeger S (2017) Comparative study of colloidal gold and quantum dots as labels for multiplex screening tests for multi-mycotoxin detection. Anal Chim Acta 955:48–57. CrossRefPubMedGoogle Scholar
  14. 14.
    Zhang C, Han Y, Lin L, Deng N, Chen B, Liu Y (2017) Development of quantum dots-labeled antibody fluorescence immunoassays for the detection of morphine. J Agric Food Chem 65:1290–1295. CrossRefPubMedGoogle Scholar
  15. 15.
    Pathak S, Davidson MC, Silva GA (2007) Characterization of the functional binding properties of antibody conjugated quantum dots. Nano Lett 7:1839–1845. CrossRefPubMedGoogle Scholar
  16. 16.
    Sivaram AJ, Wardiana A, Howard CB, Mahler SM, Thurecht KJ (2018) Recent advances in the generation of antibody-nanomaterial conjugates. Adv Healthc Mater 7:1700607. CrossRefGoogle Scholar
  17. 17.
    Chen Z, Ren X, Meng X, Zhang Y, Chen D, Tang F (2012) Novel fluorescence method for detection of α-L-fucosidase based on CdTe quantum dots. Anal Chem 84:4077–4082. CrossRefPubMedGoogle Scholar
  18. 18.
    Meng X, Wei J, Ren X, Ren J, Tang F (2013) A simple and sensitive fluorescence biosensor for detection of organophosphorus pesticides using H2O2-sensitive quantum dots/bi-enzyme. Biosens Bioelectron 47:402–407. CrossRefPubMedGoogle Scholar
  19. 19.
    Jin D, Seo MH, Huy BT, Pham QT, Conte ML, Thangadurai D, Lee YI (2016) Quantitative determination of uric acid using CdTe nanoparticles as fluorescence probes. Biosens Bioelectron 77:359–365. CrossRefPubMedGoogle Scholar
  20. 20.
    Azmi NE, Ramli NI, Abdullah J, Abdul Hamid MA, Sidek H, Abd Rahman S, Ariffin N, Yusof NA (2015) A simple and sensitive fluorescence based biosensor for the determination of uric acid using H2O2-sensitive quantum dots/dual enzymes. Biosens Bioelectron 67:129–133. CrossRefPubMedGoogle Scholar
  21. 21.
    Huang X, Zhan S, Xu H, Meng X, Xiong Y, Chen X (2016) Ultrasensitive fluorescence immunoassay for detection of ochratoxin A using catalase-mediated fluorescence quenching of CdTe QDs. Nanoscale 8:9390–9397. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Chen R, Huang X, Li J, Shan S, Lai W, Xiong Y (2016) A novel fluorescence immunoassay for the sensitive detection of Escherichia coli O157:H7 in milk based on catalase-mediated fluorescence quenching of CdTe quantum dots. Anal Chim Acta 947:50–57. CrossRefPubMedGoogle Scholar
  23. 23.
    Mai BT, Fernandes S, Balakrishnan PB, Pellegrino T (2018) Nanosystems based on magnetic nanoparticles and thermo- or pH-responsive polymers: an update and future perspectives. Acc Chem Res 51:999–1013. CrossRefPubMedGoogle Scholar
  24. 24.
    Liu Z, Qi P, Wang X, Wang Z, Xu X, Chen W, Wu L, Zhang H, Wang Q, Wang X (2017) Multi-pesticides residue analysis of grains using modified magnetic nanoparticle adsorbent for facile and efficient cleanup. Food Chem 230:423–431. CrossRefPubMedGoogle Scholar
  25. 25.
    Fock J, Parmvi M, Strömberg M, Svedlindh P, Donolato M, Hansen MF (2017) Comparison of optomagnetic and AC susceptibility readouts in a magnetic nanoparticle agglutination assay for detection of C-reactive protein. Biosens Bioelectron 88:94–100. CrossRefPubMedGoogle Scholar
  26. 26.
    Suaifan GARY, Alhogail S, Zourob M (2017) Paper-based magnetic nanoparticle-peptide probe for rapid and quantitative colorimetric detection of Escherichia coli O157:H7. Biosens Bioelectron 92:702–708. CrossRefPubMedGoogle Scholar
  27. 27.
    Gao Z, Xu M, Hou L, Chen G, Tang D (2013) Magnetic bead-based reverse colorimetric immunoassay strategy for sensing biomolecules. Anal Chem 85:6945–6952. CrossRefPubMedGoogle Scholar
  28. 28.
    Zhang B, Tang D, Goryacheva IY, Niessner R, Knopp D (2013) Anodic-stripping voltammetric immunoassay for ultrasensitive detection of low-abundance proteins using quantum dot aggregated hollow microspheres. Chemistry 19:2496–2503. CrossRefPubMedGoogle Scholar
  29. 29.
    Man Y, Ren J, Li B, Jin X, Pan L (2018) A simple, highly sensitive colorimetric immunosensor for the detection of alternariol monomethyl ether in fruit by non-aggregated gold nanoparticles. Anal Bioanal Chem 410:7511–7521. CrossRefPubMedGoogle Scholar
  30. 30.
    Wang X, Niessner R, Knopp D (2014) Magnetic bead-based colorimetric immunoassay for aflatoxin B1 using gold nanoparticles. Sensors 14:21535–21548. CrossRefPubMedGoogle Scholar
  31. 31.
    Fabrega A, Agut M, Calvo M (2002) Optimization of the method of detection of metabolites produced by the Alternaria genus: alternariol, alternariol monomethyl ether, altenuene, altertoxin I and tentoxin. J Food Sci 67:802–806. CrossRefGoogle Scholar
  32. 32.
    Asam S, Konitzer K, Schieberle P, Rychlik M (2009) Stable isotope dilution assays of alternariol and alternariol monomethyl ether in beverages. J Agric Food Chem 57:5152–5160. CrossRefPubMedGoogle Scholar
  33. 33.
    Li F, Yoshizawa T (2000) Alternaria mycotoxins in weathered wheat from China. J Agric Food Chem 48:2920–2924. CrossRefPubMedGoogle Scholar
  34. 34.
    De Berardis S, De Paola EL, Montevecchi G, Garbini D, Masino F, Antonelli A, Melucci D (2018) Determination of four Alternaria alternata mycotoxins by QuEChERS approach coupled with liquid chromatography-tandem mass spectrometry in tomato-based and fruit-based products. Food Res Int 106:677–685. CrossRefPubMedGoogle Scholar
  35. 35.
    Rico-Yuste A, Walravens J, Urraca JL, Abou-Hany RAG, Descalzo AB, Orellana G, Rychlik M, De Saeger S, Moreno-Bondi MC (2018) Analysis of alternariol and alternariol monomethyl ether in foodstuffs by molecularly imprinted solid-phase extraction and ultra-high-performance liquid chromatography tandem mass spectrometry. Food Chem 243:357–364. CrossRefPubMedGoogle Scholar
  36. 36.
    Ruan C, Diao X, Zhang H, Zhang L, Liu C (2016) Development of a dispersive liquid–liquid microextraction technique for the analysis of citrinin, alternariol and alternariol monomethyl ether in fruit juices. Anal Methods 8:7944–7950. CrossRefGoogle Scholar
  37. 37.
    Marcela Beatriz M, Rafael A, Juan José C, Héctor F, Marı́a Alicia Z (2004) Improvement of alternariol monomethyl ether detection at gold electrodes modified with a dodecanethiol self-assembled monolayer. J Electroanal Chem 570:209–217. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Beijing Research Center for Agricultural Standards and TestingBeijing Academy of Agriculture and Forestry SciencesBeijingChina
  2. 2.Risk Assessment Laboratory for Agro-products (Beijing)Ministry of AgricultureBeijingChina
  3. 3.Beijing Municipal Key Laboratory of Agriculture Environment MonitoringBeijingChina

Personalised recommendations