Advertisement

Microchimica Acta

, 186:244 | Cite as

Open-tubular capillary electrochromatography with β-cyclodextrin-functionalized magnetic nanoparticles as stationary phase for enantioseparation of dansylated amino acids

  • Xuan Yang
  • Xiaodong Sun
  • Zijie Feng
  • Yingxiang DuEmail author
  • Jiaquan Chen
  • Xiaofei Ma
  • Xiaoqi Li
Original Paper
  • 19 Downloads

Abstract

Magnetic nanoparticles (MNPs) modified with β-cyclodextrin and mono-6-deoxy-6-(1-methylimidazolium)-β-cyclodextrin tosylate (an ionic liquid), which called MNP-β-CD and MNP-β-CD-IL, were coated into the capillary inner wall. Compared to an uncoated capillary, the new systems show good reproducibility and durability. The systems based on the use of MNP-β-CD or MNP-β-CD-IL as stationary phases were established for enantioseparation of Dns-modified amino acids. Improved resolutions were obtained for both CEC systems. Primary parameters such as running buffer pH value and applied voltage were systematically optimized in order to obtain optimal enantioseparations. Under the optimized conditions, the capillaries exhibited excellent chiral recognition ability for six Dns-amino acids (the DL-forms of alanine, leucine, lsoleucine, valine, methionine, glutamic acid) and provided a promising way for the preparation of chiral column.

Graphical Abstract

Schematic presentation of the open-tubular capillary electrochromatography systems with MNP-β-CD and MNP-β-CD-IL as stationary phases for enantioseparation of dansylated amino acids.

Keywords

CEC Magnetic nanoparticles Open-tubular capillary Enantiomeric separation Dns-amino acids Magnetic coationg Ionic liquid 

Abbreviations

CEC

capillary electrochromatography

MNP-β-CD

magnetite nanoparticle coated with β-cyclodextrin

MNP-β-CD-IL

magnetite nanoparticle coated with mono-6-deoxy-6-(1-methylimidazolium)-β -cyclodextrin tosylate nanoparticles

β-CDOTs

mono-6-O-Tosyl-β-cyclodextrin

β-CD-IL

6-MI-β-CD+OTs, mono-6-deoxy-6-(1-methylimidazolium)-β -cyclodextrin tosylate.

Notes

Acknowledgements

This work was supported by the Natural Science Foundation of Jiangsu Province (Program No.BK20141353) and the Project of the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3318_MOESM1_ESM.docx (1.9 mb)
ESM 1 (DOCX 1.88 MB)

References

  1. 1.
    Wang J (2005) Electrochemical detection for capillary electrophoresis microchips: a review. Electroanalysis 17:1133–1140CrossRefGoogle Scholar
  2. 2.
    Ramos-Payán M, Ocaña-Gonzalez JA, Fernández-Torres RM, Llobera A, Bello-López MÁ (2018) Recent trends in capillary electrophoresis for complex samples analysis: a review. Electrophoresis 39:111–125CrossRefGoogle Scholar
  3. 3.
    Zhang K, Gao R (2001) Capillary Electrochromatography. Methods Mol Biol 52:197Google Scholar
  4. 4.
    Yang L, Guihen E, Holmes JD, Loughran M, O'Sulliva GP, Glennon JD (2005) Gold nanoparticle-modified etched capillaries for open-tubular capillary electrochromatography. Anal Chem 77:1840–1846CrossRefGoogle Scholar
  5. 5.
    Tanaka N, Nagayama H, Kobayashi H et al (2015) Monolithic silica columns for HPLC, micro-HPLC, and CEC. J Sep Sci 23:111–116Google Scholar
  6. 6.
    Guihen E, Glennon JD (2004) Recent highlights in stationary phase design for open-tubular capillary electrochromatography. J Chromatogr A 1044:67–81CrossRefGoogle Scholar
  7. 7.
    Nilsson C, Birnbaum S, Nilsson S (2007) Use of nanoparticles in capillary and microchip electrochromatography. J Chromatogr A 1168:212–224CrossRefGoogle Scholar
  8. 8.
    Řezanka P, Ehala S, Koktan J et al (2012) Application of bare gold nanoparticles in open-tubular CEC separations of polyaromatic hydrocarbons and peptides. J Nanopart Res 35:73–78Google Scholar
  9. 9.
    Hua X, Du Y, Chen J et al (2013) Evaluation of the enantioselectivity of carbon nanoparticles-modified chiral separation systems using dextrin as chiral selector by capillary electrokinetic chromatography. Electrophoresis 34:1901–1907CrossRefGoogle Scholar
  10. 10.
    Gong ZS, Duan LP, Tang AN (2015) Amino-functionalized silica nanoparticles for improved enantiomeric separation in capillary electrophoresis using carboxymethyl-β-cyclodextrin (CM-β-CD) as a chiral selector. Microchim Acta 182:1297–1304CrossRefGoogle Scholar
  11. 11.
    Liu Z, Du Y, Feng Z (2018) Enantioseparation of drugs by capillary electrochromatography using a stationary phase covalently modified with graphene oxide. Microchim Acta 184:583–593Google Scholar
  12. 12.
    Zhang Y, Wang W, Ma X, Jia L (2016) Polydopamine assisted fabrication of titanium oxide nanoparticles modified column for proteins separation by capillary electrochromatography. Anal Biochem 512:103–109CrossRefGoogle Scholar
  13. 13.
    Liu S, Peng J, Liu Z, Liu Z, Zhang H, Wu R’ (2016) One-pot approach to prepare Organo-silica hybrid capillary monolithic column with intact mesoporous silica nanoparticle as building block. Sci Rep 6:34718–34728CrossRefGoogle Scholar
  14. 14.
    Xu S, Mo R, Jin C, Cui X, Bai R, Ji Y (2017) Mesoporous silica nanoparticles incorporated hybrid monolithic stationary phase immobilized with pepsin for enantioseparation by capillary electrochromatography. J Pharm Biomed Anal 140:190–198CrossRefGoogle Scholar
  15. 15.
    Ríos Á, Zougagh M (2016) Recent advances in magnetic nanomaterials for improving analytical processes. Trends Anal Chem 84:72–83CrossRefGoogle Scholar
  16. 16.
    Okamoto Y, Ikawa Y, Kitagawa F, Otsuka K (2007) Preparation of fritless capillary using avidin immobilized magnetic particles for electrochromatographic chiral separation. J Chromatogr A 1143:264–269CrossRefGoogle Scholar
  17. 17.
    Wang Y, Zhang Z, Zhang L, Li F, Chen L, Wan QH (2007) Magnetically immobilized beds for capillary electrochromatography. Anal Chem 79:5082–5086CrossRefGoogle Scholar
  18. 18.
    Qu P, Lei J, Zhang L, Ouyang R, Ju H (2010) Molecularly imprinted magnetic nanoparticles as tunable stationary phase located in microfluidic channel for enantioseparation. J Chromatogr A 1217:6115–6121CrossRefGoogle Scholar
  19. 19.
    Zhu Y, Zhou C, Qin S, Ren Z, Zhang L, Fu H, Zhang W (2012) A novel open-tubular capillary electrochromatography with magnetic nanoparticle coating as stationary phase. Electrophoresis 33:340–347CrossRefGoogle Scholar
  20. 20.
    Wu LL, Liang RP, Chen J et al (2017) Separation of chiral compounds using magnetic molecularly imprinted polymer nanoparticles as stationary phase by microchip capillary electrochromatography. Electrophoresis 39:356–362CrossRefGoogle Scholar
  21. 21.
    Hu J, Shao D, Chen C, Sheng G, Li J, Wang X, Nagatsu M (2010) Plasma-induced grafting of cyclodextrin onto multiwall carbon nanotube/iron oxides for adsorbent application. J Phys Chem B 114:6779–6785CrossRefGoogle Scholar
  22. 22.
    Shan C, Ma Z, Tong M, Ni J (2015) Removal of hg(II) by poly(1-vinylimidazole)-grafted Fe3O4@SiO2 magnetic nanoparticles. Water Res 69:252–260CrossRefGoogle Scholar
  23. 23.
    Tang W, Ong TT, Muderawan IW, Ng SC (2007) Effect of alkylimidazolium substituents on enantioseparation ability of single-isomer alkylimidazolium-beta-cyclodextrin derivatives in capillary electrophoresis. Anal Chim Acta 585:227–233CrossRefGoogle Scholar
  24. 24.
    Yu J, Zuo L, Liu H, Zhang L, Guo X (2013) Synthesis and application of a chiral ionic liquid functionalized β-cyclodextrin as a chiral selector in capillary electrophoresis. Biomed Chromatogr 27:1027–1033CrossRefGoogle Scholar
  25. 25.
    Li J, Yu T, Xu G, Du Y, Liu Z, Feng Z, Yang X, Xi Y, Liu J (2018) Synthesis and application of ionic liquid functionalized Î2-cyclodextrin, mono-6-deoxy-6-(4-amino-1,2,4-triazolium)-Î2-cyclodextrin chloride, as chiral selector in capillary electrophoresis. J Chromatogr A 1559:178–185Google Scholar
  26. 26.
    Zhu Y, Zhang L, Qian J, Zhang W (2013) The characteristics of open-tubular capillary electrochromatography columns with series/mixed stationary phases constructed with magnetic nanoparticle coating. Talanta 104:173–179CrossRefGoogle Scholar
  27. 27.
    Liang RP, Wang XN, Wang L, Qiu JD (2014) Enantiomeric separation by microchip electrophoresis using bovine serum albumin conjugated magnetic core-shell Fe3 O4 @au nanocomposites as stationary phase. Electrophoresis 35:2824–2832CrossRefGoogle Scholar
  28. 28.
    Wang XN, Liang RP, Meng XY, Qiu JD (2014) One-step synthesis of mussel-inspired molecularly imprinted magnetic polymer as stationary phase for chip-based open tubular capillary electrochromatography enantioseparation. J Chromatogr A 1362:301–308CrossRefGoogle Scholar
  29. 29.
    Carrasco-Correa EJ, Ramis-Ramos G, Herrero-Martínez JM (2015) Hybrid methacrylate monolithic columns containing magnetic nanoparticles for capillary electrochromatography. J Chromatogr A 1385:77–84CrossRefGoogle Scholar
  30. 30.
    Qu P, Lei J, Zhang L, Ouyang R, Ju H (2010) Molecularly imprinted magnetic nanoparticles as tunable stationary phase located in microfluidic channel for enantioseparation. J Chromatogr A 1217:6115–6121CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Xuan Yang
    • 1
  • Xiaodong Sun
    • 1
  • Zijie Feng
    • 1
  • Yingxiang Du
    • 1
    • 2
    • 3
    Email author
  • Jiaquan Chen
    • 1
  • Xiaofei Ma
    • 1
  • Xiaoqi Li
    • 1
  1. 1.Department of Analytical ChemistryChina Pharmaceutical UniversityNanjingPeople’s Republic of China
  2. 2.Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education)China Pharmaceutical UniversityNanjingPeople’s Republic of China
  3. 3.State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjingPeople’s Republic of China

Personalised recommendations