Advertisement

Microchimica Acta

, 186:230 | Cite as

Portable paper-based colorimetric nanoprobe for the detection of Stachybotrys chartarum using peptide labeled magnetic nanoparticles

  • Ghadeer A. R. Y. SuaifanEmail author
  • Mohammed ZourobEmail author
Original Paper
  • 54 Downloads

Abstract

A colorimetric assay is presented for the detection of Stachybotrys chartarum proteases as biomarkers. The assay comprises a gold film acting as solid support and carrying an immobilized peptide substrate that is specific for S. chartarum protease. The substrate was conjugated to black magnetic nanoparticles (MNPs) to form a monolayer on the gold film. Hence, detection nanoprobe is black. If, however, the peptide-MNP fragments are cleaved by S. chartarum proteases present in a sample, the golden color of the detecting nanoprobe becomes apparent so that positive visual readout is enabled. The method was applied to the determination of S. chartarum in (spiked) environmental samples. The limit of detection ranges from 10 to 100 spores·mL−1 depending on the kind of sample (culture, dust, mold and soil). Assay specificity was examined for Aspergillus flavus, Fusarium solani. Penicillin chrysogenum, and Saccharomyces cerevisiae, and negative readouts were observed visually for all samples, except for those also containing S. chartarum.

Graphical abstract

Schematic presentation of S. chartarum colorimetric nanoprobe.

Keywords

Stachybotrys atra Stachybotrys alternans Black mold Pathogen detection Magnetic nanoparticles Colorimetric assay Protease peptide substrate 

Notes

Acknowledgements

Prof Ghadeer Suaifan would like to acknowledge the financial funding from the Ministry of Higher education for the Scientific Research Support Fund in Jordan (MPH/1/19/2015) and the Deanship of the Scientific Research (Grant number 1731, 2016) at The University of Jordan.

Compliance with ethical standards

The author(s) declare that they have no competing interests.

References

  1. 1.
    Fung F, Clark R, Williams S (1998) Stachybotrys, a mycotoxin-producing fungus of increasing toxicologic importance. J Toxicol Clin Toxicol 36(1–2):79–86CrossRefGoogle Scholar
  2. 2.
    Centers for Disease Control and Prevention (CDC) (2000) Update: pulmonary hemorrhage/hemosiderosis among infants--Cleveland, Ohio, 1993-1996. MMWR Morb Mortal Wkly Rep 49(9):180–184Google Scholar
  3. 3.
    Betancourt DA, Krebs K, Moore SA, Martin SM (2013) Microbial volatile organic compound emissions from Stachybotrys chartarum growing on gypsum wallboard and ceiling tile. BMC Microbiol 13:283–283.  https://doi.org/10.1186/1471-2180-13-283 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Tripi PA, Modlin S, Sorenson WG, Dearborn DG (2000) Acute pulmonary haemorrhage in an infant during induction of general anaesthesia. Paediatr Anaesth 10:92–94.  https://doi.org/10.1046/j.1460-9592.2000.00452.x CrossRefPubMedGoogle Scholar
  5. 5.
    Fell JW (1993) Rapid identification of yeast species using three primers in a polymerase chain reaction. Mol Mar Biol Biotechnol 2:174–180PubMedGoogle Scholar
  6. 6.
    Medicine Io (2000) Clearing the air: asthma and indoor air exposures. The National Academies Press, Washington, DC.  https://doi.org/10.17226/9610 CrossRefGoogle Scholar
  7. 7.
    Cooley JD, Wong WC, Jumper CA, Straus DC (1998) Correlation between the prevalence of certain fungi and sick building syndrome. Occup Environ Med 55:579–584CrossRefGoogle Scholar
  8. 8.
    Pestka JJ, Yike I, Dearborn DG, Ward MDW, Harkema JR (2008) Stachybotrys chartarum, trichothecene mycotoxins, and damp building-related illness: new insights into a public health enigma. Toxicol Sci 104:4–26.  https://doi.org/10.1093/toxsci/kfm284 CrossRefPubMedGoogle Scholar
  9. 9.
    Black JA, Foarde KK, Menetrez MY (2006) Solvent comparison in the isolation, solubilization, and toxicity of Stachybotrys chartarum spore trichothecene mycotoxins in an established in vitro luminescence protein translation inhibition assay. J Microbiol Methods 66:354–361.  https://doi.org/10.1016/j.mimet.2005.12.011 CrossRefPubMedGoogle Scholar
  10. 10.
    Schmechel D, Simpson JP, Beezhold D, Lewis DM (2006) The development of species-specific immunodiagnostics for Stachybotrys chartarum: the role of cross-reactivity. J Immunol Methods 309:150–159.  https://doi.org/10.1016/j.jim.2005.12.001 CrossRefPubMedGoogle Scholar
  11. 11.
    Brasel TL, Douglas DR, Wilson SC, Straus DC (2005) Detection of airborne Stachybotrys chartarum macrocyclic Trichothecene mycotoxins on particulates smaller than conidia. Appl Environ Microbiol 71:114–122.  https://doi.org/10.1128/AEM.71.1.114-122.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Van Emon JM, Reed AW, Yike I, Vesper SJ (2003) ELISA measurement of Stachylysin™ in serum to quantify human exposures to the indoor Mold Stachybotrys chartarum. J Occup Environ Med 45:582–591.  https://doi.org/10.1097/01.jom.0000071503.96740.65 CrossRefPubMedGoogle Scholar
  13. 13.
    Kauffman HF, Tomee JFC, van de Riet MA, Timmerman AJB, Borger P (2000) Protease-dependent activation of epithelial cells by fungal allergens leads to morphologic changes and cytokine production. J Allergy Clin Immunol 105:1185–1193.  https://doi.org/10.1067/mai.2000.106210
  14. 14.
    Kordula T, Banbula A, Macomson J, Travis J (2002) Isolation and properties of Stachyrase A, a chymotrypsin-like serine proteinase from Stachybotrys chartarum. Infect Immun 70:419–421.  https://doi.org/10.1128/IAI.70.1.419-421.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Tote K, Vanden Berghe D, Maes L, Cos P (2008) A new colorimetric microtitre model for the detection of Staphylococcus aureus biofilms. J Appl Microbiol 46:249–254.  https://doi.org/10.1111/j.1472-765X.2007.02298.x CrossRefGoogle Scholar
  16. 16.
    Rao CY, Brain JD, Burge HA (2000) Reduction of pulmonary toxicity of Stachybotrys chartarum spores by methanol extraction of mycotoxins. Appl Environ Microbiol 66:2817–282117.  https://doi.org/10.1128/AEM.66.7.2817-2821.2000 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Suaifan GARY, Esseghaier C, Ng A, Zourob M (2012) Wash-less and highly sensitive assay for prostate specific antigen detection. Anal 137:5614–5619.  https://doi.org/10.1039/c2an36243k CrossRefGoogle Scholar
  18. 18.
    Suaifan GA, Shehadeh M, Al-Ijel H, Ng A, Zourob M (2013) Recent progress in prostate-specific antigen and HIV proteases detection. Expert Rev Mol Diagn 13:707–718.  https://doi.org/10.1586/14737159.2013.835576 CrossRefPubMedGoogle Scholar
  19. 19.
    Esseghaier C, Suaifan GARY, Ng A, Zourob M (2014) One-step assay for optical prostate specific antigen detection using magnetically engineered responsive thin film. J Biomed Nanotechnol 10:1123–1129.  https://doi.org/10.1166/jbn.2014.1803 CrossRefPubMedGoogle Scholar
  20. 20.
    Rajwa B, McNally HA, Varadharajan P, Sturgis J, Robinson JP (2004) AFM/CLSM data visualization and comparison using an open-source toolkit. Microsc Res Tech 64:176–184.  https://doi.org/10.1002/jemt.20067 CrossRefPubMedGoogle Scholar
  21. 21.
    Ammann HM, Nevalainen A, Prezant B (2008) Indoor mold: basis for health concerns. In: Recognition, evaluation and control of indoor mold, 1st edn. AIHA, Fairfax, USA, pp 1–19Google Scholar
  22. 22.
    Suaifan GARY, Esseghaier C, Ng A, Zourob M (2013) Ultra-rapid colorimetric assay for protease detection using magnetic nanoparticle-based biosensors. Analyst 138:3735–3739.  https://doi.org/10.1039/c3an36881e CrossRefPubMedGoogle Scholar
  23. 23.
    Alhogail S, Suaifan GARY, Zourob M (2016) Rapid colorimetric sensing platform for the detection of Listeria monocytogenes foodborne pathogen. Biosens Bioelectron 86:1061–1066.  https://doi.org/10.1016/j.bios.2016.07.043 CrossRefPubMedGoogle Scholar
  24. 24.
    Suaifan GARY, Alhogail S, Zourob M (2017) Rapid and low-cost biosensor for the detection of Staphylococcus aureus. Biosens Bioelectron 90:230–23725.  https://doi.org/10.1016/j.bios.2016.11.047 CrossRefPubMedGoogle Scholar
  25. 25.
    Suaifan GARY, Alhogail S, Zourob M (2017) Paper-based magnetic nanoparticle-peptide probe for rapid and quantitative colorimetric detection of Escherichia coli O157:H7. Biosens Bioelectron 92:702–708.  https://doi.org/10.1016/j.bios.2016.10.023 CrossRefPubMedGoogle Scholar
  26. 26.
    Zhou G, Whong WZ, Ong T, Chen B (2000) Development of a fungus-specific PCR assay for detecting low-level fungi in an indoor environment. Mol Cell Probes 14:339–348.  https://doi.org/10.1006/mcpr.2000.0324 CrossRefPubMedGoogle Scholar
  27. 27.
    Flappan SM, Portnoy J, Jones P, Barnes C (1999) Infant pulmonary hemorrhage in a suburban home with water damage and mold (Stachybotrys atra). Environ Health Perspect 107(11):927–930.  https://doi.org/10.1289/ehp.99107927 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Knapp JF, Michael JG, Hegenbarth MA, Jones PE, Black PG (1999) Case records of the childrens’s mercy hospital, case 02-1999: a 1-month-old infant with respiratory distress and shock. Pediatr Emerg Care 15(4):288–293CrossRefGoogle Scholar
  29. 29.
    Hedayati MT, Mayahi S, Denning DW (2010) A study on Aspergillus species in houses of asthmatic patients from Sari City, Iran and a brief review of the health effects of exposure to indoor Aspergillus. Environ Monit Assess 168:481–487.  https://doi.org/10.1007/s10661-009-1128-x CrossRefPubMedGoogle Scholar
  30. 30.
    Saremi H, Okhovvat S, Ashrafi S (2011) Fusarium diseases as the main soil borne fungal pathogen on plants and their control management with soil solarization in Iran. Afr J Biotechnol 10(80):18391–18398.  https://doi.org/10.5897/AJB11.2935 CrossRefGoogle Scholar
  31. 31.
    Pérez-Torrado R, Querol A (2016) Opportunistic strains of Saccharomyces cerevisiae: a potential risk sold in food products. Front Microbiol 6:1522.  https://doi.org/10.3389/fmicb.2015.01522 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Bloom E, Bal K, Nyman E, Must A, Larsson L (2007) Mass spectrometry-based strategy for direct detection and quantification of some mycotoxins produced by Stachybotrys and Aspergillus spp. in indoor environments. Appl Environ Microbiol 73:4211–4217.  https://doi.org/10.1128/AEM.00343-07 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Dean TR, Kohan M, Betancourt D, Menetrez MY (2006) A simple polymerase chain reaction-sequencing analysis capable of identifying multiple medically relevant filamentous fungal species. Mycopathologia 162:265–271.  https://doi.org/10.1007/s11046-006-0068-z CrossRefPubMedGoogle Scholar
  34. 34.
    Cruz-Perez P, Buttner MP, Stetzenbach LD (2001) Specific detection of Stachybotrys chartarum in pure culture using quantitative polymerase chain reaction. Mol Cell Probes 15:129–138.  https://doi.org/10.1006/mcpr.2001.0347 CrossRefPubMedGoogle Scholar
  35. 35.
    Haugland RA, Vesper SJ, Wymer LJ (1999) Quantitative measurement of Stachybotrys chartarum conidia using real time detection of PCR products with the TaqManTM fluorogenic probe system. Mol Cell Probes 13:329–340.  https://doi.org/10.1006/mcpr.1999.0258 CrossRefPubMedGoogle Scholar
  36. 36.
    Bu S, Wang K, Ju C, Han Y, Li Z, Du P, Hao Z, Li C, Liu W, Wan J (2018) A pregnancy test strip for detection of pathogenic bacteria by using concanavalin A-human chorionic gonadotropin-Cu 3 (PO 4) 2 hybrid nanoflowers, magnetic separation, and smartphone readout. Microchim Acta 185:464–451.  https://doi.org/10.1007/s00604-018-2968-2 CrossRefGoogle Scholar
  37. 37.
    Hong L, Zhou F, Shi DM, Zhang XJ, Wang GF (2017) Portable aptamer biosensor of platelet-derived growth factor-BB using a personal glucose meter with triply amplified. Biosens Bioelectron 95:152–159.  https://doi.org/10.1016/j.bios.2017.04.023 CrossRefPubMedGoogle Scholar
  38. 38.
    Huang H, Zhao G, Dou W (2018) Portable and quantitative point-of-care monitoring of Escherichia coli O157:H7 using a personal glucose meter based on immunochromatographic assay. Biosens Bioelectron 107:266–271.  https://doi.org/10.1016/j.bios.2018.02.027 CrossRefPubMedGoogle Scholar
  39. 39.
    Lee SC, Kim MS, Yoo KC, Ha NR, Moon JY, Lee SJ, Yoon MY (2017) Sensitive fluorescent imaging of Salmonella enteritidis and Salmonella typhimurium using a polyvalent directed peptide polymer. Michrochim Acta 184(8):2611–2620.  https://doi.org/10.1007/s00604-017-2240-1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Pharmaceutical Sciences, Faculty of PharmacyThe University of JordanAmmanJordan
  2. 2.Department of ChemistryAlfaisal UniversityRiyadhSaudi Arabia
  3. 3.King Faisal Specialist Hospital and Research CenterRiyadhSaudi Arabia

Personalised recommendations