Microchimica Acta

, 186:241 | Cite as

Fluorometric determination of the activity of the biomarker terminal deoxynucleotidyl transferase via the enhancement of the fluorescence of silver nanoclusters by in-situ grown DNA tails

  • Bao-Zhu Chi
  • Chen-Lu Wang
  • Zhi-Qiao Wang
  • Ting Pi
  • Xiao-Li Zhong
  • Chao-Qun Deng
  • Yu-Chuan Feng
  • Zhi-Mei LiEmail author
Original Paper


The activity of terminal deoxynucleotidyl transferase (TdTase) is a biomarker for routine diagnosis of acute leukemia. A method has been developed for the determination of TdTase activity. It is based on the use of silver nanoclusters (AgNCs) whose yellow fluorescence is enhanced by an in-situ grown DNA tail of TdTase-polymerized and guanine-rich DNA at the 3′ end of a hairpin DNA. The fluorescence, best measured at excitation/emission peaks of 530/585 nm, increases linearly in the 1 to 35 mU mL−1 TdTase activity range. The detection limit is 0.8 mU mL−1. The method is cost-efficient, selective and convenient. It integrates enhancement of the fluorescence of AgNCs and target recognition into a single process.

Graphical abstract

Schematic presentation of a method for determination of TdTase activity. It is based on AgNCs fluorescence enhanced by in-situ grown TdTase-polymerized G-rich DNA tail. The method integrates AgNCs fluorescence enhancement and the target recognition into a single process.


TdTase Enhancement in situ AgNCs Luminescent probes Biomarkers Turn on Fluorescence Acute leukemia Hairpin DNA Guanine-rich 



This research was supported by the National Natural Science Foundation of China (21365015), and the Jiangxi Province Natural Science Foundation (20171BAB213014).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3288_MOESM1_ESM.doc (146 kb)
ESM 1 (DOC 145 kb)


  1. 1.
    Kranz BR, Thierfelder S (1986) Improved detection of terminal transferase (TdT): the use of detergents on glutaraldehyde-fixed non-dehydrated cells prevents denaturation and diffusion artifacts. Leukemia Res 10:1041–1049. CrossRefGoogle Scholar
  2. 2.
    Peralta-Zaragoza O, Recillas-Targa F, Madrid-Marina V (2004) Terminal deoxynucleotidyl transferase is down-regulated by AP-1-like regulatory elements in human lymphoid cells. Immunology 111:195–203. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Liu Z, Li W, Nie Z, Peng F, Huang Y, Yao S (2014) Randomly arrayed G-quadruplexes for label-free and real-time assay of enzyme activity. Chem Commun 50:6875–6878. CrossRefGoogle Scholar
  4. 4.
    Leung KH, He HZ, He B, Zhong HJ, Lin S, Wang YT, Ma DL, Leung CH (2015) Label-free luminescence switch-on detection of hepatitis C virus NS3 helicase activity using a G-quadruplex-selective probe. Chem Sci 6:2166–2171. CrossRefPubMedGoogle Scholar
  5. 5.
    Hou T, Wang X, Liu X, Lu T, Liu S, Li F (2014) Amplified detection of T4 polynucleotide kinase activity by the coupled λ exonuclease cleavage reaction and catalytic assembly of bimolecular beacons. Anal Chem 86:884–890. CrossRefPubMedGoogle Scholar
  6. 6.
    Xing XW, Tang F, Wu J, Chu JM, Feng YQ, Zhou X, Yuan BF (2014) Sensitive detection of DNA methyltransferase activity based on exonuclease-mediated target recycling. Anal Chem 86:11269–11274. CrossRefPubMedGoogle Scholar
  7. 7.
    Yuan Y, Li W, Liu Z, Nie Z, Huang Y, Yao S (2014) A versatile biosensing system for DNA-related enzyme activity assay via the synthesis of silver nanoclusters using enzymatically-generated DNA as template. Biosens Bioelectron 61:321–327. CrossRefPubMedGoogle Scholar
  8. 8.
    Lu L, Wang M, Liu LJ, Wong CY, Leung CH, Ma DL (2015) A luminescence switch-on probe for terminal deoxynucleotidyl transferase (TdT) activity detection by using an iridium(iii)-based i-motif probe. Chem Commun 51:9953–9956. CrossRefGoogle Scholar
  9. 9.
    Zhang L, Wang E (2014) Metal nanoclusters: new fluorescent probes for sensors and bioimaging. Nano Today 9:132–157. CrossRefGoogle Scholar
  10. 10.
    Shen C, Xia X, Hu S, Yang M, Wang J (2015) Silver nanoclusters-based fluorescence assay of protein kinase activity and inhibition. Anal Chem 87:693–698. CrossRefPubMedGoogle Scholar
  11. 11.
    Dong H, Jin S, Ju H, Hao K, Xu LP, Lu H, Zhang X (2012) Trace and label-free MicroRNA detection using oligonucleotide encapsulated silver nanoclusters as probes. Anal Chem 84:8670–8674. CrossRefPubMedGoogle Scholar
  12. 12.
    Sun Z, Wang Y, Wei Y, Liu R, Zhu H, Cui Y, Zhao Y, Gao X (2011) Ag cluster-aptamer hybrid: specifically marking the nucleus of live cells. Chem Commun 47:11960–11962. CrossRefGoogle Scholar
  13. 13.
    Yeh HC, Sharma J, Han JJ, Martinez JS, Werner JH (2010) A DNA−silver nanocluster probe that fluoresces upon hybridization. Nano Lett 10:3106–3110. CrossRefPubMedGoogle Scholar
  14. 14.
    Yin J, He X, Wang K, Xu F, Shangguan J, He D, Shi H (2013) Label-free and turn-on aptamer strategy for Cancer cells detection based on a DNA–silver nanocluster fluorescence upon recognition-induced hybridization. Anal Chem 85:12011–12019. CrossRefPubMedGoogle Scholar
  15. 15.
    Lan GY, Chen WY, Chang HT (2011) One-pot synthesis of fluorescent oligonucleotide ag nanoclusters for specific and sensitive detection of DNA. Biosens Bioelectron 26:2431–2435. CrossRefPubMedGoogle Scholar
  16. 16.
    Li J, Zhong X, Zhang H, Le XC, Zhu JJ (2012) Binding-induced fluorescence turn-on assay using aptamer-functionalized silver nanocluster DNA probes. Anal Chem 84:5170–5174. CrossRefPubMedGoogle Scholar
  17. 17.
    Guo Q, Yang X, Wang K, Tan W, Li W, Tang H, Li H (2009) Sensitive fluorescence detection of nucleic acids based on isothermal circular strand-displacement polymerization reaction. Nucleic Acids Res 37:e20. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Wen D, He M, Ma K, Cui Y, Kong J, Yang H, Liu Q (2018) Highly sensitive fluorometric determination of thrombin by on-chip signal amplification initiated by terminal deoxynucleotidyl transferase. Microchim Acta 185:380. CrossRefGoogle Scholar
  19. 19.
    Zhou F, Cui X, Shang A, Lian J, Yang L, Jin Y, Li B (2017) Fluorometric determination of the activity and inhibition of terminal deoxynucleotidyl transferase via in-situ formation of copper nanoclusters using enzymatically generated DNA as template. Microchim Acta 184:773–779. CrossRefGoogle Scholar
  20. 20.
    Peng F, Liu Z, Li W, Huang Y, Nie Z, Yao S (2015) Enzymatically generated long polyT-templated copper nanoparticles for versatile biosensing assay of DNA-related enzyme activity. Anal Methods 7:4355–4361. CrossRefGoogle Scholar
  21. 21.
    Fang H, Libing L, Lidong L (2011) Water-soluble conjugated polymers for amplified fluorescence detection of template-independent DNA elongation catalyzed by polymerase. Adv Funct Mater 21:3143–3149. CrossRefGoogle Scholar
  22. 22.
    Modak MJ (1978) Biochemistry of terminal deoxynucleotidyltransferase: mechanism of inhibition by adenosine 5′-triphosphate. Biochemistry 17:3116–3120. CrossRefPubMedGoogle Scholar
  23. 23.
    Gonzalez RG, Haxo RS, Schleich T (1980) Mechanism of action of polymeric aurintricarboxylic acid, a potent inhibitor of protein-nucleic acid interactions. Biochemistry 19:4299–4303. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Bao-Zhu Chi
    • 1
  • Chen-Lu Wang
    • 1
  • Zhi-Qiao Wang
    • 1
  • Ting Pi
    • 1
  • Xiao-Li Zhong
    • 1
  • Chao-Qun Deng
    • 1
  • Yu-Chuan Feng
    • 1
  • Zhi-Mei Li
    • 1
    Email author
  1. 1.Department of ChemistryNanchang UniversityNanchangPeople’s Republic of China

Personalised recommendations