Advertisement

Microchimica Acta

, 186:203 | Cite as

Recent advances in molybdenum disulfide-based electrode materials for electroanalytical applications

  • A. T. Ezhil Vilian
  • Bose Dinesh
  • Sung-Min Kang
  • Uma Maheswari KrishnanEmail author
  • Yun Suk HuhEmail author
  • Young-Kyu HanEmail author
Review Article

Abstract

The primary objective of this review article is to summarize the development and structural diversity of 2D/3D molybdenum disulfide (MoS2) based modified electrodes for electrochemical sensors and biosensor applications. Hydrothermal, mechanical, and ultrasonic techniques and solution-based exfoliation have been used to synthesize graphene-like 2D MoS2 layers. The unique physicochemical properties of MoS2 and its nanocomposites, including high mechanical strength, high carrier transport, large surface area, excellent electrical conductivity, and rapid electron transport rate, render them useful as efficient transducers in various electrochemical applications. The present review summarizes 2D/3D MoS2-based nanomaterials as an electrochemical platform for the detection and analysis of various biomolecules (e.g., neurotransmitters, NADH, glucose, antibiotics, DNA, proteins, and bacteria) and hazardous chemicals (e.g., heavy metal ions, organic compounds, and pesticides). The substantial improvements that have been achieved in the performance of enzyme-based amperometry, chemiluminescence, and nucleic acid sensors incorporating MoS2-based chemically modified electrodes are also addressed. We also summarize key sensor parameters such as limits of detection (LODs), sensitivity, selectivity, response time, and durability, as well as real applications of the sensing systems in the environmental, pharmaceutical, chemical, industrial, and food analysis fields. Finally, the remaining challenges in designing MoS2 nanostructures suitable for electroanalytical applications are outlined.

Graphical abstract

• MoS2 based materials exhibit high conductivity and improved electrochemical performance with great potential as a sensing electrode.

• The role of MoS2 nanocomposite films and their detection strategies were reviewed.

• Biomarkers detection for disease identification and respective clinical treatments were discussed.

• Future Challenges, as well as possible research development for “MoS2 nanocomposites”, are suggested.

Keywords

Molybdenum disulphide (MoS2Electrochemical biosensors Electrochemical detection Neurotransmitter Electrochemiluminescence 

Notes

Acknowledgments

We would like to thank the National Research Foundation grant funded by the Ministry of Science, ICT and Future Planning of Korea (No. 2014R1A5A1009799 and 2017M2A2A6A01020938) for funding support. We thank Seo Young Oh for her assistance with the drawing of schematic illustration and for sharing her wisdom with us during the revision of this research.

Compliance with ethical standards

The author(s) declare that they have no competing interests.

References

  1. 1.
    Yang Z, Tang Y, Li J, Zhang Y, Hu X (2014) Facile synthesis of tetragonal columnar-shaped TiO2 nanorods for the construction of sensitive electrochemical glucose biosensor. Biosens Bioelectron 54:528–533PubMedGoogle Scholar
  2. 2.
    Dunn MR, Jimenez RM, Chaput JC (2017) Analysis of aptamer discovery and technology. Nat Rev Chem 1(10):0076Google Scholar
  3. 3.
    Pumera M, Loo AH (2014) Layered transition-metal dichalcogenides (MoS2 and WS2) for sensing and biosensing. Trends Anal Chem 61:49–53Google Scholar
  4. 4.
    Chhowalla M, Shin HS, Eda G, Li L-J, Loh KP, Zhang H (2013) The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem 5(4):263–275PubMedGoogle Scholar
  5. 5.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669PubMedGoogle Scholar
  6. 6.
    Kannan PK, Late DJ, Morgan H, Rout CS (2015) Recent developments in 2D layered inorganic nanomaterials for sensing. Nanoscale 7(32):13293–13312PubMedGoogle Scholar
  7. 7.
    Peng Q, De S (2013) Outstanding mechanical properties of monolayer MoS2 and its application in elastic energy storage. Phys Chem Chem Phys 15(44):19427–19437PubMedGoogle Scholar
  8. 8.
    Wang L, Wang Y, Wong JI, Palacios T, Kong J, Yang HY (2014) Functionalized MoS2 nanosheet-based field-effect biosensor for label-free sensitive detection of cancer marker proteins in solution. Small 10(6):1101–1105PubMedGoogle Scholar
  9. 9.
    Lupan O, Cretu V, Deng M, Gedamu D, Paulowicz I, Kaps Sr, Mishra YK, Polonskyi O, Zamponi C, Kienle L (2014) Versatile growth of freestanding orthorhombic α-molybdenum trioxide nano-and microstructures by rapid thermal processing for gas nanosensors. J Phys Chem C 118(27):15068–15078Google Scholar
  10. 10.
    Muhulet A, Miculescu F, Voicu SI, Schütt F, Thakur VK, Mishra YK (2018) Fundamentals and scopes of doped carbon nanotubes towards energy and biosensing applications. Materials Today Energy 9:154–186Google Scholar
  11. 11.
    Lee C, Yan H, Brus LE, Heinz TF, Hone J, Ryu S (2010) Anomalous lattice vibrations of single-and few-layer MoS2. ACS Nano 4(5):2695–2700PubMedGoogle Scholar
  12. 12.
    Benavente E, Santa Ana M, Mendizábal F, González G (2002) Intercalation chemistry of molybdenum disulfide. Coord Chem Rev 224(1–2):87–109Google Scholar
  13. 13.
    Mishra YK, Adelung R (2018) ZnO tetrapod materials for functional applications. Mater Today 21(6):631–651Google Scholar
  14. 14.
    Sinha A, Tan B, Huang Y, Zhao H, Dang X, Chen J, Jain R (2018) MoS2 nanostructures for electrochemical sensing of multidisciplinary targets: a review. Trends Anal Chem 102:75–90Google Scholar
  15. 15.
    Yan Y, Xia B, Xu Z, Wang X (2014) Recent development of molybdenum sulfides as advanced electrocatalysts for hydrogen evolution reaction. ACS Catal 4(6):1693–1705Google Scholar
  16. 16.
    Xia DD, Gong F, Pei X, Wang W, Li H, Zeng W, Wu M, Papavassiliou DV (2018) Molybdenum and tungsten disulfides-based nanocomposite films for energy storage and conversion: a review. Chem Eng J 348:908–928Google Scholar
  17. 17.
    Theerthagiri J, Senthil R, Senthilkumar B, Polu AR, Madhavan J, Ashokkumar M (2017) Recent advances in MoS2 nanostructured materials for energy and environmental applications–a review. J Solid State Chem 252:43–71Google Scholar
  18. 18.
    Lee K, Kim HY, Lotya M, Coleman JN, Kim GT, Duesberg GS (2011) Electrical characteristics of molybdenum disulfide flakes produced by liquid exfoliation. Adv Mater 23(36):4178–4182PubMedGoogle Scholar
  19. 19.
    Peng Y, Meng Z, Zhong C, Lu J, Yu W, Jia Y, Qian Y (2001) Hydrothermal synthesis and characterization of single-molecular-layer MoS2 and MoSe2. Chem Lett 30(8):772–773Google Scholar
  20. 20.
    Shen M, Yan Z, Yang L, Du P, Zhang J, Xiang B (2014) MoS2 nanosheet/TiO2 nanowire hybrid nanostructures for enhanced visible-light photocatalytic activities. Chem Commun 50(97):15447–15449Google Scholar
  21. 21.
    Yang L, Wang S, Mao J, Deng J, Gao Q, Tang Y, Schmidt OG (2013) Hierarchical MoS2/polyaniline nanowires with excellent electrochemical performance for Lithium-ion batteries. Adv Mater 25(8):1180–1184PubMedGoogle Scholar
  22. 22.
    Chang K, Chen W (2011) In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries. Chem Commun 47(14):4252–4254Google Scholar
  23. 23.
    Su S, Sun H, Xu F, Yuwen L, Wang L (2013) Highly sensitive and selective determination of dopamine in the presence of ascorbic acid using gold nanoparticles-decorated MoS2 nanosheets modified electrode. Electroanalysis 25(11):2523–2529Google Scholar
  24. 24.
    Li Z, Wong SL (2017) Functionalization of 2D transition metal dichalcogenides for biomedical applications. Mater Sci Eng C 70:1095–1106Google Scholar
  25. 25.
    Sarkar D, Liu W, Xie X, Anselmo AC, Mitragotri S, Banerjee K (2014) MoS2 field-effect transistor for next-generation label-free biosensors. ACS Nano 8(4):3992–4003PubMedGoogle Scholar
  26. 26.
    Kalantar-zadeh K, Ou JZ, Daeneke T, Strano MS, Pumera M, Gras SL (2015) Two-dimensional transition metal dichalcogenides in biosystems. Adv Funct Mater 25(32):5086–5099Google Scholar
  27. 27.
    Tenne R, Margulis L, Genut Me, Hodes G (1992) Polyhedral and cylindrical structures of tungsten disulphide. Nature 360(6403):444–446Google Scholar
  28. 28.
    Cui J, Xu S, Wang L (2017) Monolayer MoS2 decorated Cu7S4-au nanocatalysts for sensitive and selective detection of mercury (II). Science China Materials 60(4):352–360Google Scholar
  29. 29.
    Gan X, Zhao H, Wong K-Y, Lei DY, Zhang Y, Quan X (2018) Covalent functionalization of MoS2 nanosheets synthesized by liquid phase exfoliation to construct electrochemical sensors for cd (II) detection. Talanta 182:38–48PubMedGoogle Scholar
  30. 30.
    Zhang Y, Chen P, Wen F, Yuan B, Wang H (2016) Fe3O4 nanospheres on MoS2 nanoflake: Electrocatalysis and detection of Cr (VI) and nitrite. J Electroanal Chem 761:14–20Google Scholar
  31. 31.
    Wang H, Chen P, Wen F, Zhu Y, Zhang Y (2015) Flower-like Fe2O3@ MoS2 nanocomposite decorated glassy carbon electrode for the determination of nitrite. Sens. Actuators B220:749–754Google Scholar
  32. 32.
    Huang H, Lv L, Xu F, Liao J, Liu S, Wen H-r (2017) PrFeO3-MoS2 nanosheets for use in enhanced electro-oxidative sensing of nitrite. Microchim Acta 184(10):4141–4149Google Scholar
  33. 33.
    Zhang Y, Chen P, Wen F, Huang C, Wang H (2016) Construction of polyaniline/molybdenum sulfide nanocomposite: characterization and its electrocatalytic performance on nitrite. Ionics 22(7):1095–1102Google Scholar
  34. 34.
    Wang H, Wen F, Chen Y, Sun T, Meng Y, Zhang Y (2016) Electrocatalytic determination of nitrite based on straw cellulose/molybdenum sulfide nanocomposite. Biosens Bioelectron 85:692–697PubMedGoogle Scholar
  35. 35.
    Zhang Y, Wen F, Tan J, Jiang C, Zhu M, Chen Y, Wang H (2017) Highly efficient electrocatalytic oxidation of nitrite by electrodeposition of au nanoparticles on molybdenum sulfide and multi-walled carbon nanotubes. J Electroanal Chem 786:43–49Google Scholar
  36. 36.
    Ghanei-Motlagh M, Taher MA (2018) A novel electrochemical sensor based on silver/halloysite nanotube/molybdenum disulfide nanocomposite for efficient nitrite sensing. Biosens Bioelectron 109:279–285PubMedGoogle Scholar
  37. 37.
    Li C, Zhang D, Wang J, Hu P, Jiang Z (2017) Magnetic MoS2 on multiwalled carbon nanotubes for sulfide sensing. Anal Chim Acta 975:61–69PubMedGoogle Scholar
  38. 38.
    Su S, Cao W, Zhang C, Han X, Yu H, Zhu D, Chao J, Fan C, Wang L (2016) Improving performance of MoS2-based electrochemical sensors by decorating noble metallic nanoparticles on the surface of MoS2 nanosheet. RSC Adv 6(80):76614–76620Google Scholar
  39. 39.
    Huang H, Zhang J, Cheng M, Liu K, Wang X (2017) Amperometric sensing of hydroquinone using a glassy carbon electrode modified with a composite consisting of graphene and molybdenum disulfide. Microchim Acta 184(12):4803–4808Google Scholar
  40. 40.
    Peng Y, Tang Z, Dong Y, Che G, Xin Z (2018) Electrochemical detection of hydroquinone based on MoS2/reduced graphene oxide nanocomposites. J Electroanal Chem 816:38–44Google Scholar
  41. 41.
    Yang T, Chen H, Yang R, Jiang Y, Li W, Jiao K (2015) A glassy carbon electrode modified with a nanocomposite consisting of molybdenum disulfide intercalated into self-doped polyaniline for the detection of bisphenol a. Microchim Acta 182(15–16):2623–2628Google Scholar
  42. 42.
    Huang H, Wang M, Wang Y, Li X, Niu Z, Wang X, Song J (2018) Electrochemical determination of 2, 4-dichlorophenol by using a glassy carbon electrode modified with molybdenum disulfide, ionic liquid and gold/silver nanorods. Microchim Acta 185(6):292Google Scholar
  43. 43.
    Yang T, Yu R, Chen H, Yang R, Wang S, Luo X, Jiao K (2016) Electrochemical preparation of thin-layered molybdenum disulfide-poly (m-aminobenzenesulfonic acid) nanocomposite for TNT detection. J Electroanal Chem 781:70–75Google Scholar
  44. 44.
    Govindasamy M, Chen S-M, Mani V, Akilarasan M, Kogularasu S, Subramani B (2017) Nanocomposites composed of layered molybdenum disulfide and graphene for highly sensitive amperometric determination of methyl parathion. Microchim Acta 184(3):725–733Google Scholar
  45. 45.
    Chen L, Ji L, Zhao J, Zhang X, Yang F, Liu J (2017) Facile exfoliation of molybdenum disulfide nanosheets as highly efficient electrocatalyst for detection of m-nitrophenol. J Electroanal Chem 801:300–305Google Scholar
  46. 46.
    Jeyapragasam T, Meena Devi J, Ganesh V (2018) Molybdenum disulfide-based modifier for electrochemical detection of 4-nitrophenol. Ionics 24(12):4033–4041Google Scholar
  47. 47.
    Zhai Y, Li J, Chu X, Xu M, Jin F, Li X, Fang X, Wei Z, Wang X (2016) MoS2 microflowers based electrochemical sensing platform for non-enzymatic glucose detection. J Alloy Comp 672:600–608Google Scholar
  48. 48.
    Zhao Z, Liu J, Wang W, Zhang J, Li G, Liu J, Lian K, Hu J, Zhuiykov S (2017) Ag functionalized molybdenum disulfide hybrid nanostructures for selective and sensitive Amperometric hydrogen peroxide detection. Int J Electrochem Sci 12(9):8761–8776Google Scholar
  49. 49.
    Zhou J-X, Tang L-N, Yang F, Liang F-X, Wang H, Li Y-T, Zhang G-J (2017) MoS2/Pt nanocomposite-functionalized microneedle for real-time monitoring of hydrogen peroxide release from living cells. Analyst 142(22):4322–4329PubMedGoogle Scholar
  50. 50.
    Lin D, Li Y, Zhang P, Zhang W, Ding J, Li J, Wei G, Su Z (2016) Fast preparation of MoS2 nanoflowers decorated with platinum nanoparticles for electrochemical detection of hydrogen peroxide. RSC Adv 6(58):52739–52745Google Scholar
  51. 51.
    Li X, Du X (2017) Molybdenum disulfide nanosheets supported au-Pd bimetallic nanoparticles for non-enzymatic electrochemical sensing of hydrogen peroxide and glucose. Sensors Actuators B Chem 239:536–543Google Scholar
  52. 52.
    Su S, Lu Z, Li J, Hao Q, Liu W, Zhu C, Shen X, Shi J, Wang L (2018) MoS2–au@ Pt nanohybrids as a sensing platform for electrochemical nonenzymatic glucose detection. New J Chem 42(9):6750–6755Google Scholar
  53. 53.
    Zhu L, Zhang Y, Xu P, Wen W, Li X, Xu J (2016) PtW/MoS2 hybrid nanocomposite for electrochemical sensing of H2O2 released from living cells. Biosens Bioelectron 80:601–606PubMedGoogle Scholar
  54. 54.
    Sha R, Vishnu N, Badhulika S (2018) Bimetallic Pt-Pd nanostructures supported on MoS2 as an ultra-high performance electrocatalyst for methanol oxidation and nonenzymatic determination of hydrogen peroxide. Microchim Acta 185(8):399Google Scholar
  55. 55.
    Lin X, Ni Y, Kokot S (2016) Electrochemical and bio-sensing platform based on a novel 3D cu nano-flowers/layered MoS2 composite. Biosens Bioelectron 79:685–692PubMedGoogle Scholar
  56. 56.
    Fang L, Wang F, Chen Z, Qiu Y, Zhai T, Hu M, Zhang C, Huang K (2017) Flower-like MoS2 decorated with Cu2O nanoparticles for non-enzymatic amperometric sensing of glucose. Talanta 167:593–599PubMedGoogle Scholar
  57. 57.
    Gao Z, Lin Y, He Y, Tang D (2017) Enzyme-free amperometric glucose sensor using a glassy carbon electrode modified with poly (vinyl butyral) incorporating a hybrid nanostructure composed of molybdenum disulfide and copper sulfide. Microchim Acta 184(3):807–814Google Scholar
  58. 58.
    Li D, Liu X, Yi R, Zhang J, Su Z, Wei G (2018) Electrochemical sensor based on novel two-dimensional nanohybrids: MoS2 nanosheets conjugated with organic copper nanowires for simultaneous detection of hydrogen peroxide and ascorbic acid. Inorg Chem Front 5(1):112–119Google Scholar
  59. 59.
    Wang S, Zhang S, Liu M, Song H, Gao J, Qian Y (2018) MoS2 as connector inspired high electrocatalytic performance of NiCo2O4 nanoplates towards glucose. Sensors Actuators B Chem 254:1101–1109Google Scholar
  60. 60.
    Lin Y, Chen X, Lin Y, Zhou Q, Tang D (2015) Non-enzymatic sensing of hydrogen peroxide using a glassy carbon electrode modified with a nanocomposite made from carbon nanotubes and molybdenum disulfide. Microchim Acta 182:1803–1809Google Scholar
  61. 61.
    Wang Q, Zhang Y, Ye W, Wang C (2016) Ni(OH)2/MoSx nanocomposite electrodeposited on a flexible CNT/PI membrane as an electrochemical glucose sensor: the synergistic effect of Ni(OH)2 and MoSx. J Solid State Electrochem 20(1):133–142Google Scholar
  62. 62.
    Geng D, Bo X, Guo L (2017) Ni-doped molybdenum disulfide nanoparticles anchored on reduced graphene oxide as novel electroactive material for a non-enzymatic glucose sensor. Sensors Actuators B Chem 244:131–141Google Scholar
  63. 63.
    Cheng Z, Shen Q, Yu H, Han D, Zhong F, Yang Y (2017) Non-enzymatic sensing of hydrogen peroxide using a glassy carbon electrode modified with the layered MoS2-reduced graphene oxide and Prussian blue. Microchim Acta 184(12):4587–4595Google Scholar
  64. 64.
    Lin D, Su Z, Wei G (2018) Three-dimensional porous reduced graphene oxide decorated with MoS2 quantum dots for electrochemical determination of hydrogen peroxide. Mater Today Chem 7:76–83Google Scholar
  65. 65.
    Xue Y, Maduraiveeran G, Wang M, Zheng S, Zhang Y, Jin W (2018) Hierarchical oxygen-implanted MoS2 nanoparticle decorated graphene for the non-enzymatic electrochemical sensing of hydrogen peroxide in alkaline media. Talanta 176:397–405PubMedGoogle Scholar
  66. 66.
    Chao J, Han X, Sun H, Su S, Weng L, Wang L (2016) Platinum nanoparticles supported MoS2 nanosheet for simultaneous detection of dopamine and uric acid. Sci China Chem 59(3):332–337Google Scholar
  67. 67.
    Zou HL, Li BL, Luo HQ, Li NB (2017) 0D-2D heterostructures of au nanoparticles and layered MoS2 for simultaneous detections of dopamine, ascorbic acid, uric acid, and nitrite. Sensors Actuators B Chem 253:352–360Google Scholar
  68. 68.
    Zhang Y, Wen F, Huang Z, Tan J, Zhou Z, Yuan K, Wang H (2017) Nitrogen doped lignocellulose/binary metal sulfide modified electrode: preparation and application for non-enzymatic ascorbic acid, dopamine and nitrite sensing. J Electroanal Chem 806:150–157Google Scholar
  69. 69.
    Li Y, Lin H, Peng H, Qi R, Luo C (2016) A glassy carbon electrode modified with MoS2 nanosheets and poly (3, 4-ethylenedioxythiophene) for simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid. Microchim Acta 183(9):2517–2523Google Scholar
  70. 70.
    Yang T, Chen H, Jing C, Luo S, Li W, Jiao K (2017) Using poly (m-aminobenzenesulfonic acid)-reduced MoS2 nanocomposite synergistic electrocatalysis for determination of dopamine. Sensors Actuators B Chem 249:451–457Google Scholar
  71. 71.
    Vijayaraj K, Dinakaran T, Lee Y, Kim S, Kim HS, Lee J, Chang S-C (2017) One-step construction of a molybdenum disulfide/multi-walled carbon nanotubes/polypyrrole nanocomposite biosensor for the ex-vivo detection of dopamine in mouse brain tissue. Biochem Biophys Res Commun 494(1–2):181–187PubMedGoogle Scholar
  72. 72.
    Pramoda K, Moses K, Maitra U, Rao C (2015) Superior performance of a MoS2-RGO composite and a Borocarbonitride in the electrochemical detection of dopamine, uric acid and adenine. Electroanalysis 27(8):1892–1898Google Scholar
  73. 73.
    Cheng M, Zhang X, Wang M, Huang H, Ma J (2017) A facile electrochemical sensor based on well-dispersed graphene-molybdenum disulfide modified electrode for highly sensitive detection of dopamine. J Electroanal Chem 786:1–7Google Scholar
  74. 74.
    Xing L, Ma Z (2016) A glassy carbon electrode modified with a nanocomposite consisting of MoS2 and reduced graphene oxide for electrochemical simultaneous determination of ascorbic acid, dopamine, and uric acid. Microchim Acta 183(1):257–263Google Scholar
  75. 75.
    Chekin F, Boukherroub R, Szunerits S (2017) MoS2/reduced graphene oxide nanocomposite for sensitive sensing of cysteamine in presence of uric acid in human plasma. Mater Sci Eng, C 73:627–632Google Scholar
  76. 76.
    Mani V, Govindasamy M, Chen S-M, Karthik R, Huang S-T (2016) Determination of dopamine using a glassy carbon electrode modified with a graphene and carbon nanotube hybrid decorated with molybdenum disulfide flowers. Microchim Acta 183(7):2267–2275Google Scholar
  77. 77.
    Yin A, Wei X, Cao Y, Li H (2016) High-quality molybdenum disulfide nanosheets with 3D structure for electrochemical sensing. Appl Surf Sci 385:63–71Google Scholar
  78. 78.
    Dolinska J, Chidambaram A, Adamkiewicz W, Estili M, Lisowski W, Iwan M, Palys B, Sudholter EJ, Marken F, Opallo M (2016) Synthesis and characterization of porous carbon–MoS2 nanohybrid materials: electrocatalytic performance towards selected biomolecules. J Mater Chem B 4(8):1448–1457Google Scholar
  79. 79.
    Chekin F, Teodorescu F, Coffinier Y, Pan G-H, Barras A, Boukherroub R, Szunerits S (2016) MoS2/reduced graphene oxide as active hybrid material for the electrochemical detection of folic acid in human serum. Biosens Bioelectron 85:807–813PubMedGoogle Scholar
  80. 80.
    Mani V, Govindasamy M, Chen S-M, Subramani B, Sathiyan A, Merlin JP (2017) Determination of folic acid using graphene/molybdenum disulfide nanosheets/gold nanoparticles ternary composite. Int J Electrochem Sci 12:258–267Google Scholar
  81. 81.
    Yang Y, Zhang H, Huang C, Yang D, Jia N (2017) Electrochemical non-enzyme sensor for detecting clenbuterol (CLB) based on MoS2-au-PEI-hemin layered nanocomposites. Biosens Bioelectron 89:461–467PubMedGoogle Scholar
  82. 82.
    Tang Y, Liu P, Xu J, Li L, Yang L, Liu X, Liu S, Zhou Y (2018) Electrochemical aptasensor based on a novel flower-like TiO2 nanocomposite for the detection of tetracycline. Sensors Actuators B Chem 258:906–912Google Scholar
  83. 83.
    Yang R, Zhao J, Chen M, Yang T, Luo S, Jiao K (2015) Electrocatalytic determination of chloramphenicol based on molybdenum disulfide nanosheets and self-doped polyaniline. Talanta 131:619–623PubMedGoogle Scholar
  84. 84.
    Chen H-Y, Wang J, Meng L, Yang T, Jiao K (2016) Thin-layered MoS2/polyaniline nanocomposite for highly sensitive electrochemical detection of chloramphenicol. Chin Chem Lett 27(2):231–234Google Scholar
  85. 85.
    Govindasamy M, Chen S-M, Mani V, Devasenathipathy R, Umamaheswari R, Santhanaraj KJ, Sathiyan A (2017) Molybdenum disulfide nanosheets coated multiwalled carbon nanotubes composite for highly sensitive determination of chloramphenicol in food samples milk, honey and powdered milk. J Colloid Interface Sci 485:129–136PubMedGoogle Scholar
  86. 86.
    Petit-Domínguez MD, Quintana C, Vázquez L, del Pozo M, Cuadrado I, Parra-Alfambra AM, Casero E (2018) Synergistic effect of MoS2 and diamond nanoparticles in electrochemical sensors: determination of the anticonvulsant drug valproic acid. Microchim Acta 185(7):334Google Scholar
  87. 87.
    Zhang H, Wang T, Qiu Y, Fu F, Yu Y (2016) Electrochemical behavior and determination of baicalin on a glassy carbon electrode modified with molybdenum disulfide nano-sheets. J Electroanal Chem 775:286–291Google Scholar
  88. 88.
    Xu B, Yang L, Zhao F, Zeng B (2017) A novel electrochemical quercetin sensor based on Pd/MoS2-ionic liquid functionalized ordered mesoporous carbon. Electrochim Acta 247:657–665Google Scholar
  89. 89.
    Zhang W, Zong L, Geng G, Li Y, Zhang Y (2018) Enhancing determination of quercetin in honey samples through electrochemical sensors based on highly porous polypyrrole coupled with nanohybrid modified GCE. Sensors Actuators B Chem 257:1099–1109Google Scholar
  90. 90.
    Xu B, Zhang B, Yang L, Zhao F, Zeng B (2017) Electrochemical determination of luteolin using molecularly imprinted poly-carbazole on MoS2/graphene-carbon nanotubes nanocomposite modified electrode. Electrochim Acta 258:1413–1420Google Scholar
  91. 91.
    Zhang Y, Liu Z, Zou L, Ye B (2018) A new voltammetry sensor platform for eriocitrin based on CoS2-MoS2-PDDA-GR nanocomposite. Talanta 189:345–352PubMedGoogle Scholar
  92. 92.
    Yang T, Chen M, Nan F, Chen L, Luo X, Jiao K (2015) Enhanced electropolymerization of poly (xanthurenic acid)–MoS2 film for specific electrocatalytic detection of guanine and adenine. J Mater Chem B 3(24):4884–4891Google Scholar
  93. 93.
    Yang T, Yang R, Chen H, Nan F, Ge T, Jiao K (2015) Electrocatalytic activity of molybdenum disulfide nanosheets enhanced by self-doped polyaniline for highly sensitive and synergistic determination of adenine and guanine. ACS Appl Mater Interfaces 7(4):2867–2872PubMedGoogle Scholar
  94. 94.
    Chao J, Zou M, Zhang C, Sun H, Pan D, Pei H, Su S, Yuwen L, Fan C, Wang L (2015) A MoS2–based system for efficient immobilization of hemoglobin and biosensing applications. Nanotechnology 26(27):274005PubMedGoogle Scholar
  95. 95.
    Liu H, Chen X, Su X, Duan C, Guo K, Zhu Z (2015) Flower-like MoS2 modified reduced graphene oxide nanocomposite: synthesis and application for lithium-ion batteries and mediator-free biosensor. J Electrochem Soc 162(12):B312–B318Google Scholar
  96. 96.
    Yoon J, Lee T, Jo J, Oh B-K, Choi J-W (2017) Electrochemical H2O2 biosensor composed of myoglobin on MoS2 nanoparticle-graphene oxide hybrid structure. Biosens. Bioelectron 93:14–20Google Scholar
  97. 97.
    Yoon J, Shin J-W, Lim J, Mohammadniaei M, Bapurao GB, Lee T, Choi J-W (2017) Electrochemical nitric oxide biosensor based on amine-modified MoS2/graphene oxide/myoglobin hybrid. Colloids Surf B 159:729–736Google Scholar
  98. 98.
    Zhang B, Zhang Y, Liang W, Yu X, Tan H, Wang G, Li A, Jin J, Huang L (2017) Copper sulfide-functionalized molybdenum disulfide nanohybrids as nanoenzyme mimics for electrochemical immunoassay of myoglobin in cardiovascular disease. RSC Adv 7(5):2486–2493Google Scholar
  99. 99.
    Shu Y, Chen J, Xu Q, Wei Z, Liu F, Lu R, Xu S, Hu X (2017) MoS2 nanosheet–au nanorod hybrids for highly sensitive amperometric detection of H2O2 in living cells. J Mater Chem B 5(7):1446–1453Google Scholar
  100. 100.
    Kim H-U, Kim H, Ahn C, Kulkarni A, Jeon M, Yeom GY, Lee M-H, Kim T (2015) In situ synthesis of MoS2 on a polymer based gold electrode platform and its application in electrochemical biosensing. RSC Adv 5(14):10134–10138Google Scholar
  101. 101.
    Jeong J-M, Yang M, Kim DS, Lee TJ, Choi BG (2017) High performance electrochemical glucose sensor based on three-dimensional MoS2/graphene aerogel. J Colloid Interface Sci 506:379–385PubMedGoogle Scholar
  102. 102.
    Parlak O, İncel A, Uzun L, Turner AP, Tiwari A (2017) Structuring au nanoparticles on two-dimensional MoS2 nanosheets for electrochemical glucose biosensors. Biosens Bioelectron 89:545–550PubMedGoogle Scholar
  103. 103.
    Vasilescu I, Eremia SA, Kusko M, Radoi A, Vasile E, Radu G-L (2016) Molybdenum disulphide and graphene quantum dots as electrode modifiers for laccase biosensor. Biosens Bioelectron 75:232–237PubMedGoogle Scholar
  104. 104.
    Lin X, Ni Y, Kokot S (2016) Electrochemical cholesterol sensor based on cholesterol oxidase and MoS2-AuNPs modified glassy carbon electrode. Sensors Actuators B Chem 233:100–106Google Scholar
  105. 105.
    Huang Y, Tan J, Cui L, Zhou Z, Zhou S, Zhang Z, Zheng R, Xue Y, Zhang M, Li S (2018) Graphene and au NPs co-mediated enzymatic silver deposition for the ultrasensitive electrochemical detection of cholesterol. Biosens Bioelectron 102:560–567PubMedGoogle Scholar
  106. 106.
    Song D, Wang Y, Lu X, Gao Y, Li Y, Gao F (2018) Ag nanoparticles-decorated nitrogen-fluorine co-doped monolayer MoS2 nanosheet for highly sensitive electrochemical sensing of organophosphorus pesticides. Sensors Actuators B Chem 267:5–13Google Scholar
  107. 107.
    Song D, Li Q, Lu X, Li Y, Li Y, Wang Y, Gao F (2018) Ultra-thin bimetallic alloy nanowires with porous architecture/monolayer MoS2 nanosheet as a highly sensitive platform for the electrochemical assay of hazardous omethoate pollutant. J Hazard Mater 357:466–474PubMedGoogle Scholar
  108. 108.
    Jing P, Yi H, Xue S, Chai Y, Yuan R, Xu W (2015) A sensitive electrochemical aptasensor based on palladium nanoparticles decorated graphene–molybdenum disulfide flower-like nanocomposites and enzymatic signal amplification. Anal Chim Acta 853:234–241PubMedGoogle Scholar
  109. 109.
    Shuai H-L, Wu X, Huang K-J (2017) Molybdenum disulfide sphere-based electrochemical aptasensors for protein detection. J Mater Chem B 5(27):5362–5372Google Scholar
  110. 110.
    Lin K-C, Jagannath B, Muthukumar S, Prasad S (2017) Sub-picomolar label-free detection of thrombin using electrochemical impedance spectroscopy of aptamer-functionalized MoS2. Analyst 142(15):2770–2780PubMedGoogle Scholar
  111. 111.
    Su S, Sun H, Cao W, Chao J, Peng H, Zuo X, Yuwen L, Fan C, Wang L (2016) Dual-target electrochemical biosensing based on DNA structural switching on gold nanoparticle-decorated MoS2 nanosheets. ACS Appl Mater Interfaces 8(11):6826–6833PubMedGoogle Scholar
  112. 112.
    Su S, Cao W, Liu W, Lu Z, Zhu D, Chao J, Weng L, Wang L, Fan C, Wang L (2017) Dual-mode electrochemical analysis of microRNA-21 using gold nanoparticle-decorated MoS2 nanosheet. Biosens Bioelectron 94:552–559PubMedGoogle Scholar
  113. 113.
    Zhu D, Liu W, Zhao D, Hao Q, Li J, Huang J, Shi J, Chao J, Su S, Wang L (2017) Label-free electrochemical sensing platform for MicroRNA-21 detection using Thionine and gold nanoparticles co-functionalized MoS2 Nanosheet. ACS Appl Mater Interfaces 9(41):35597–35603PubMedGoogle Scholar
  114. 114.
    Shuai H-L, Huang K-J, Chen Y-X, Fang L-X, Jia M-P (2017) Au nanoparticles/hollow molybdenum disulfide microcubes based biosensor for microRNA-21 detection coupled with duplex-specific nuclease and enzyme signal amplification. Biosens Bioelectron 89:989–997PubMedGoogle Scholar
  115. 115.
    Chen Y-X, Wu X, Huang K-J (2018) A sandwich-type electrochemical biosensing platform for microRNA-21 detection using carbon sphere-MoS2 and catalyzed hairpin assembly for signal amplification. Sensors Actuators B Chem 270:179–186Google Scholar
  116. 116.
    Wang X, Nan F, Zhao J, Yang T, Ge T, Jiao K (2015) A label-free ultrasensitive electrochemical DNA sensor based on thin-layer MoS2 nanosheets with high electrochemical activity. Biosens Bioelectron 64:386–391PubMedGoogle Scholar
  117. 117.
    Wang Y, Zhuang Q, Ni Y (2015) Fabrication of riboflavin electrochemical sensor based on homoadenine single-stranded DNA/molybdenum disulfide–graphene nanocomposite modified gold electrode. J Electroanal Chem 736:47–54Google Scholar
  118. 118.
    Sumathi C, Muthukumaran P, Thivya P, Wilson J, Ravi G (2016) DNA mediated electrocatalytic enhancement of α-Fe2O3–PEDOT–C-MoS2 hybrid nanostructures for riboflavin detection on screen printed electrode. RSC Adv 6(85):81500–81509Google Scholar
  119. 119.
    Xiong E, Zhang X, Liu Y, Zhou J, Yu P, Li X, Chen J (2015) Ultrasensitive electrochemical detection of nucleic acids based on the dual-signaling electrochemical ratiometric method and exonuclease III-assisted target recycling amplification strategy. Anal Chem 87(14):7291–7296PubMedGoogle Scholar
  120. 120.
    Shim J, Banerjee S, Qiu H, Smithe KK, Estrada D, Bello J, Pop E, Schulten K, Bashir R (2017) Detection of methylation on dsDNA using nanopores in a MoS2 membrane. Nanoscale 9(39):14836–14845PubMedPubMedCentralGoogle Scholar
  121. 121.
    Tian L, Qi J, Qian K, Oderinde O, Cai Y, Yao C, Song W, Wang Y (2018) An ultrasensitive electrochemical cytosensor based on the magnetic field assisted binanozymes synergistic catalysis of Fe3O4 nanozyme and reduced graphene oxide/molybdenum disulfide nanozyme. Sensors Actuators B Chem 260:676–684Google Scholar
  122. 122.
    Su S, Zou M, Zhao H, Yuan C, Xu Y, Zhang C, Wang L, Fan C, Wang L (2015) Shape-controlled gold nanoparticles supported on MoS2 nanosheets: synergistic effect of thionine and MoS2 and their application for electrochemical label-free immunosensing. Nanoscale 7(45):19129–19135PubMedGoogle Scholar
  123. 123.
    Wang Y, Zhao G, Zhang Y, Pang X, Cao W, Du B, Wei Q (2018) Sandwich-type electrochemical immunosensor for CEA detection based on ag/MoS2@ Fe3O4 and an analogous ELISA method with total internal reflection microscopy. Sensors Actuators B Chem 266:561–569Google Scholar
  124. 124.
    Wang Y, Wang Y, Wu D, Ma H, Zhang Y, Fan D, Pang X, Du B, Wei Q (2018) Label-free electrochemical immunosensor based on flower-like ag/MoS2/rGO nanocomposites for ultrasensitive detection of carcinoembryonic antigen. Sensors Actuators B Chem 255:125–132Google Scholar
  125. 125.
    Su S, Han X, Lu Z, Liu W, Zhu D, Chao J, Fan C, Wang L, Song S, Weng L (2017) Facile synthesis of a MoS2–Prussian blue nanocube nanohybrid-based electrochemical sensing platform for hydrogen peroxide and carcinoembryonic antigen detection. ACS Appl Mater Interfaces 9(14):12773–12781PubMedGoogle Scholar
  126. 126.
    Kukkar M, Tuteja SK, Kumar P, Kim K-H, Bhadwal AS, Deep A (2018) A novel approach for amine derivatization of MoS2 nanosheets and their application toward label-free immunosensor. Anal Biochem 555:1–8PubMedGoogle Scholar
  127. 127.
    Duan F, Zhang S, Yang L, Zhang Z, He L, Wang M (2018) Bifunctional aptasensor based on novel two-dimensional nanocomposite of MoS2 quantum dots and g-C3N4 nanosheets decorated with chitosan-stabilized au nanoparticles for selectively detecting prostate specific antigen. Anal Chim Acta 1036:121–132PubMedGoogle Scholar
  128. 128.
    Qiao X, Li K, Xu J, Cheng N, Sheng Q, Cao W, Yue T, Zheng J (2018) Novel electrochemical sensing platform for ultrasensitive detection of cardiac troponin I based on aptamer-MoS2 nanoconjugates. Biosens Bioelectron 113:142–147PubMedGoogle Scholar
  129. 129.
    Fang L-X, Huang K-J, Liu Y (2015) Novel electrochemical dual-aptamer-based sandwich biosensor using molybdenum disulfide/carbon aerogel composites and au nanoparticles for signal amplification. Biosens Bioelectron 71:171–178PubMedGoogle Scholar
  130. 130.
    Li F, Li Y, Feng J, Gao Z, Lv H, Ren X, Wei Q (2018) Facile synthesis of MoS2@ Cu2O-Pt nanohybrid as enzyme-mimetic label for the detection of the hepatitis B surface antigen. Biosens Bioelectron 100:512–518PubMedGoogle Scholar
  131. 131.
    Gao Z, Li Y, Zhang X, Feng J, Kong L, Wang P, Chen Z, Dong Y, Wei Q (2018) Ultrasensitive electrochemical immunosensor for quantitative detection of HBeAg using au@ Pd/MoS2@ MWCNTs nanocomposite as enzyme-mimetic labels. Biosens Bioelectron 102:189–195PubMedGoogle Scholar
  132. 132.
    Chekin F, Bagga K, Subramanian P, Jijie R, Singh SK, Kurungot S, Boukherroub R, Szunerits S (2018) Nucleic aptamer modified porous reduced graphene oxide/MoS2 based electrodes for viral detection: application to human papillomavirus (HPV). Sensors Actuators B Chem 262:991–1000Google Scholar
  133. 133.
    Zhang Y, Chen M, Li H, Yan F, Pang P, Wang H, Wu Z, Yang W (2017) A molybdenum disulfide/gold nanorod composite-based electrochemical immunosensor for sensitive and quantitative detection of microcystin-LR in environmental samples. Sensors Actuators B Chem 244:606–615Google Scholar
  134. 134.
    Singh C, Ali MA, Kumar V, Ahmad R, Sumana G (2018) Functionalized MoS2 nanosheets assembled microfluidic immunosensor for highly sensitive detection of food pathogen. Sensors Actuators B Chem 259:1090–1098Google Scholar
  135. 135.
    Tang J, Huang Y, Cheng Y, Huang L, Zhuang J, Tang D (2018) Two-dimensional MoS2 as a nano-binder for ssDNA: ultrasensitive aptamer based amperometric detection of Ochratoxin a. Microchim Acta 185(3):162Google Scholar
  136. 136.
    Zhang X, Hu R, Zhang K, Bai R, Li D, Yang Y (2016) An ultrasensitive label-free immunoassay for C-reactive protein detection in human serum based on electron transfer. Anal Methods 8(32):6202–6207Google Scholar
  137. 137.
    He B (2017) A sandwich-type electrochemical biosensor for alpha-fetoprotein based on au nanoparticles decorating a hollow molybdenum disulfide microbox coupled with a hybridization chain reaction. New J Chem 41(19):11353–11360Google Scholar
  138. 138.
    Ji R, Chen S, Xu W, Qin Z, Qiu JF, Li CR (2018) A voltammetric immunosensor for clenbuterol based on the use of a MoS2-AuPt nanocomposite. Microchim Acta 185(4):209Google Scholar
  139. 139.
    Wang X, Deng W, Shen L, Yan M, Ge S, Yu J (2015) A sensitive quenched electrochemiluminescent DNA sensor based on the catalytic activity of gold nanoparticle functionalized MoS2. New J Chem 39(10):8100–8107Google Scholar
  140. 140.
    Zang Y, Lei J, Hao Q, Ju H (2016) CdS/MoS2 heterojunction-based photoelectrochemical DNA biosensor via enhanced chemiluminescence excitation. Biosens Bioelectron 77:557–564PubMedGoogle Scholar
  141. 141.
    Chu Y, Cai B, Ma Y, Zhao M, Ye Z, Huang J (2016) Highly sensitive electrochemical detection of circulating tumor DNA based on thin-layer MoS2/graphene composites. RSC Adv 6(27):22673–22678Google Scholar
  142. 142.
    Yang T, Chen M, Kong Q, Luo X, Jiao K (2017) Toward DNA electrochemical sensing by free-standing ZnO nanosheets grown on 2D thin-layered MoS2. Biosens Bioelectron 89:538–544PubMedGoogle Scholar
  143. 143.
    Sun Y, Wu X, Zhang K, Ren Q, Xie R (2018) Electrochemiluminescent quaternary cu-Zn-in-S nanocrystals as a sensing platform: enzyme-free and sensitive detection of the FLT3 gene based on triple signal amplification. Biosens Bioelectron 100:445–452PubMedGoogle Scholar
  144. 144.
    Kim H-U, Kim HY, Kulkarni A, Ahn C, Jin Y, Kim Y, Lee K-N, Lee M-H, Kim T (2016) A sensitive electrochemical sensor for in vitro detection of parathyroid hormone based on a MoS2-graphene composite. Sci Rep 6:34587PubMedPubMedCentralGoogle Scholar
  145. 145.
    Kukkar M, Sharma A, Kumar P, Kim K-H, Deep A (2016) Application of MoS2 modified screen-printed electrodes for highly sensitive detection of bovine serum albumin. Anal Chim Acta 939:101–107PubMedGoogle Scholar
  146. 146.
    Shi G-F, Cao J-T, Zhang J-J, Liu Y-M, Chen Y-H, Ren S-W (2015) An electrochemiluminescence aptasensor based on flowerlike CdS–MoS2 composites and DNAzyme for detection of immunoglobulin E. Sensors Actuators B Chem 220:340–346Google Scholar
  147. 147.
    Ou X, Fang C, Fan Y, Chen H, Chen S, Wei S (2016) Sandwich-configuration electrochemiluminescence biosensor based on ag nanocubes–polyamidoamine dendrimer–luminol nanocomposite for con a detection. Sensors Actuators B Chem 228:625–633Google Scholar
  148. 148.
    Wu S, Huang H, Shang M, Du C, Wu Y, Song W (2017) High visible light sensitive MoS2 ultrathin nanosheets for photoelectrochemical biosensing. Biosens Bioelectron 92:646–653PubMedGoogle Scholar
  149. 149.
    Liu X, Huo X, Liu P, Tang Y, Xu J, Liu X, Zhou Y (2017) Assembly of MoS2 nanosheet-TiO2 nanorod heterostructure as sensor scaffold for photoelectrochemical biosensing. Electrochim Acta 242:327–336Google Scholar
  150. 150.
    Wang Y-L, Cao J-T, Chen Y-H, Liu Y-M (2016) A label-free electrochemiluminescence aptasensor for carcinoembryonic antigen detection based on electrodeposited ZnS–CdS on MoS2 decorated electrode. Anal Methods 8(26):5242–5247Google Scholar
  151. 151.
    Zhang X, Guo W, Wang Z, Ke H, Zhao W, Zhang A, Huang C, Jia N (2017) A sandwich electrochemiluminescence immunosensor for highly sensitive detection of alpha fetal protein based on MoS2-PEI-au nanocomposites and au@BSA core/shell nanoparticles. Sensors Actuators B Chem 253:470–477Google Scholar
  152. 152.
    Kukkar M, Tuteja SK, Sharma AL, Kumar V, Paul AK, Kim K-H, Sabherwal P, Deep A (2016) A new electrolytic synthesis method for few-layered MoS2 nanosheets and their robust biointerfacing with reduced antibodies. ACS Appl Mater Interfaces 8(26):16555–16563PubMedGoogle Scholar
  153. 153.
    Kukkar M, Singh S, Kumar N, Tuteja SK, Kim K-H, Deep A (2017) Molybdenum disulfide quantum dot based highly sensitive impedimetric immunoassay for prostate specific antigen. Microchim Acta 184(12):4647–4654Google Scholar
  154. 154.
    Tuteja SK, Neethirajan S (2017) A highly efficient 2D exfoliated metal dichalcogenide for the on-farm rapid monitoring of non-esterified fatty acids. Chem Commun 53(72):10002–10005Google Scholar
  155. 155.
    Tuteja SK, Duffield T, Neethirajan S (2017) Liquid exfoliation of 2D MoS2 nanosheets and their utilization as a label-free electrochemical immunoassay for subclinical ketosis. Nanoscale 9(30):10886–10896PubMedGoogle Scholar
  156. 156.
    Hassanzadeh J, Khataee A (2018) Ultrasensitive chemiluminescent biosensor for the detection of cholesterol based on synergetic peroxidase-like activity of MoS2 and graphene quantum dots. Talanta 178:992–1000PubMedGoogle Scholar
  157. 157.
    Liu X, Liu P, Tang Y, Yang L, Li L, Qi Z, Li D, Wong DK (2018) A photoelectrochemical aptasensor based on a 3D flower-like TiO2-MoS2-gold nanoparticle heterostructure for detection of kanamycin. Biosens Bioelectron 112:193–201PubMedGoogle Scholar
  158. 158.
    Yang Y, Fang G, Wang X, Zhang F, Liu J, Zheng W, Wang S (2017) Electrochemiluminescent graphene quantum dots enhanced by MoS2 as sensing platform: a novel molecularly imprinted electrochemiluminescence sensor for 2-methyl-4-chlorophenoxyacetic acid assay. Electrochim Acta 228:107–113Google Scholar
  159. 159.
    Wang Y, Chen F, Ye X, Wu T, Wu K, Li C (2017) Photoelectrochemical immunosensing of tetrabromobisphenol a based on the enhanced effect of dodecahedral gold nanocrystals/MoS2 nanosheets. Sensors Actuators B Chem 245:205–212Google Scholar
  160. 160.
    Du X-L, Kang T-F, Lu L-P, Cheng S-Y (2018) An electrochemiluminescence sensor based on CdSe@CdS functionalized MoS2 and hemin/G-quadruplex-based DNAzyme biocatalytic precipitation for sensitive detection of Pb (ii). Anal Methods 10(1):51–58Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Energy and Materials EngineeringDongguk University-SeoulSeoulRepublic of Korea
  2. 2.Center for Nanotechnology & Advanced Biomaterials (CeNTAB), School of Chemical and BiotechnologySASTRA Deemed UniversityThanjavurIndia
  3. 3.Department of Biological Engineering, Biohybrid Systems Research Center (BSRC)Inha UniversityIncheonRepublic of Korea

Personalised recommendations