Microchimica Acta

, 186:237 | Cite as

Cryodesiccation-driven crystallization preparation approach for zinc(II)-phthalocyanine nanodots in cancer photodynamic therapy and photoacoustic imaging

  • Hui DingEmail author
  • Yanjuan Cai
  • Jianxiong Chen
  • Tong Lu
  • Weiping WenEmail author
  • Guohui NieEmail author
  • Xiaojun WangEmail author
Original Paper


Multifunctional nanodots represent an emerging platform for overcoming the delivery challenges of poorly water-soluble drugs for use in the diagnosis and treatment of cancer. The authors describe the preparation of nanocrystallites composed of the water-insoluble photosensitizer zinc(II)-phthalocyanine in the form of nanodots by applying a cryodesiccation-driven crystallization approach. Modification of the surface of the nanodots with Pluronic F127 and folic acid endows them with excellent water solubility and stealth properties in blood. Under near-infrared (NIR) photoexcitation at 808 nm, the nanodots are shown to produce singlet oxygen, which is widely used in photodynamic therapy of cancer. The nanodots exhibit strong NIR absorbance at 808 nm and can be used as a non-toxic contrast agent for photoacoustic imaging of tissue.

Graphical abstract

Schematic presentation of the preparation of ZnPcNDs by droplet-confined/cryodesiccation-driven crystallization.


Pluronic F127 Folic acid Near-infrared photoexcitation Contrast agent Singlet oxygen 



H.D. and Y.C. contributed equally to this work. This work was supported by China Postdoctoral Science Foundation (2018 M633229), Sanming Project of Medicine in Shenzhen (SZSM201612031), Natural Science Foundation of Guangdong Province of China (2018A030310665, 2018A0303130295), Shenzhen Science and Technology Innovation Committee (ZDSYS201707281114196, JCYJ20170306091657539, JCYJ20170413162242627, JCYJ20170306091452714, GJHZ20170313172439851), Development and Reform Commission of Shenzhen Municipality (S2016005470013).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3286_MOESM1_ESM.docx (447 kb)
ESM 1 (DOCX 446 kb)


  1. 1.
    Ping JT, Peng HS, Qin J, You FT, Wang YQ, Chen GX, Song M (2018) A fluorescent nanoprobe for real-time monitoring of intracellular singlet oxygen during photodynamic therapy. Microchim Acta 185:269CrossRefGoogle Scholar
  2. 2.
    Clement S, Chen W, Anwer AG, Goldys EM (2017) Verteprofin conjugated to gold nanoparticles for fluorescent cellular bioimaging and X-ray mediated photodynamic therapy. Microchim Acta 184:1765–1771CrossRefGoogle Scholar
  3. 3.
    Idris NM, Gnanasammandhan MK, Zhang J, Ho PC, Mahendran R, Zhang Y (2012) In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat Med 18:1580–1585CrossRefGoogle Scholar
  4. 4.
    Lin J, Wang S, Huang P, Wang Z, Chen S, Niu G, Li W, He J, Cui D, Lu G (2013) Photosensitizer-loaded gold vesicles with strong Plasmonic coupling effect for imaging-guided Photothermal/photodynamic therapy. ACS Nano 7:5320–5329CrossRefGoogle Scholar
  5. 5.
    García CP, Chambrier I, Cook MJ, Haines AH, Field RA, Russell DA (2017) Targeted photodynamic therapy of breast cancer cells using lactose-phthalocyanine functionalized gold nanoparticles. J Colloid Interface Sci 512:249CrossRefGoogle Scholar
  6. 6.
    Xiao J, Lee J (2012) Nanoparticles improve biological functions of phthalocyanine photosensitizers used for photodynamic therapy. Curr Drug Metab 13:1119–1122CrossRefGoogle Scholar
  7. 7.
    Huynh E, Jin CS, Wilson BC, Zheng G (2014) Aggregate enhanced trimodal porphyrin shell microbubbles for ultrasound, photoacoustic, and fluorescence imaging. Bioconjug Chem 25:796–801CrossRefGoogle Scholar
  8. 8.
    Attia AB, Balasundaram G, Driessen W, Ntziachristos V, Olivo M (2015) Phthalocyanine photosensitizers as contrast agents for in vivo photoacoustic tumor imaging. Biomed Opt Express 6:591–598CrossRefGoogle Scholar
  9. 9.
    Huynh E, Lovell JF, Helfield BL, Jeon M, Kim C, Goertz DE, Wilson BC, Zheng G (2012) Porphyrin shell microbubbles with intrinsic ultrasound and photoacoustic properties. J Am Chem Soc 134:16464–16467CrossRefGoogle Scholar
  10. 10.
    Ethirajan M, Chen Y, Joshi P, Pandey RK (2010) The role of porphyrin chemistry in tumor imaging and photodynamic therapy. Chem Soc Rev 40:340–362CrossRefGoogle Scholar
  11. 11.
    Shanmugam V, Selvakumar S, Yeh CS (2014) Near-infrared light-responsive nanomaterials in cancer therapeutics. Cheminform 43:6254–6287Google Scholar
  12. 12.
    Abuteen A, Zanganeh S, Akhigbe J, Samankumara LP, Aguirre A, Biswal N, Braune M, Vollertsen A, Röder B, Brückner C (2013) The evaluation of NIR-absorbing porphyrin derivatives as contrast agents in photoacoustic imaging. Phys Chem Chem Phys Pccp 15: 18502–18509Google Scholar
  13. 13.
    Lovell JF, Jin CS, Huynh E, Jin H, Kim C, Rubinstein JL, Chan WC, Cao W, Wang LV, Zheng G (2011) Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nat Mater 10:324–332CrossRefGoogle Scholar
  14. 14.
    Weber J, Beard PC, Bohndiek SE (2016) Contrast agents for molecular photoacoustic imaging. Nat Methods 13:639–650CrossRefGoogle Scholar
  15. 15.
    Elizabeth H, Lovell JF, Helfield BL, Mansik J, Chulhong K, Goertz DE, Wilson BC, Gang Z (2012) Porphyrin shell microbubbles with intrinsic ultrasound and photoacoustic properties. J Am Chem Soc 134:16464CrossRefGoogle Scholar
  16. 16.
    Manivannan E, Yihui C, Penny J, Ravindra KP (2010) The role of porphyrin chemistry in tumor imaging and photodynamic therapy. Chem Soc Rev 40:340–362Google Scholar
  17. 17.
    Song XR, Wang X, Yu SX, Cao J, Li SH, Li J, Liu G, Yang HH, Chen X (2015) Co9 se8 nanoplates as a new theranostic platform for photoacoustic/magnetic resonance dual-modal-imaging-guided chemo-photothermal combination therapy. Adv Mater 27:3285–3291CrossRefGoogle Scholar
  18. 18.
    Xie C, Zhen X, Lyu Y, Pu K (2017) Nanoparticle regrowth enhances photoacoustic signals of semiconducting macromolecular probe for in vivo imaging. Adv Mater 29:1703693CrossRefGoogle Scholar
  19. 19.
    You Y, He L, Ma B, Chen T (2017) High-drug-loading mesoporous silica Nanorods with reduced toxicity for precise Cancer therapy against nasopharyngeal carcinoma. Adv Funct Mater 27Google Scholar
  20. 20.
    Huynh E, Leung BYC, Helfield BL, Shakiba M, Gandier JA, Jin CS, Master ER, Wilson BC, Goertz DE, Gang Z (2015) In situ conversion of porphyrin microbubbles to nanoparticles for multimodality imaging. Nat Nanotechnol 10:325–332CrossRefGoogle Scholar
  21. 21.
    Maldiney T, Bessière A, Seguin J, Teston E, Sharma SK, Viana B, Bos AJ, Dorenbos P, Bessodes M, Gourier D (2014) The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells. Nat Mater 13:418–426CrossRefGoogle Scholar
  22. 22.
    Zhang Y, Jeon M, Rich LJ, Hong H, Geng J, Zhang Y, Shi S, Barnhart TE, Alexandridis P, Huizinga JD (2014) Non-invasive, multimodal functional imaging of the intestine with frozen micellar Naphthalocyanines. Nat Nanotechnol 9:631–638CrossRefGoogle Scholar
  23. 23.
    Lv P, Ma Y, Yu R, Yue H, Ni D, Wei W, Ma G (2012) Targeted delivery of insoluble cargo (paclitaxel) by PEGylated chitosan nanoparticles grafted with Arg-Gly-asp (RGD). Mol Pharm 9:1736–1747CrossRefGoogle Scholar
  24. 24.
    Zou Q, Abbas M, Zhao L, Li S, Shen G, Yan X (2017) Biological Photothermal Nanodots based on self-assembly of peptide-porphyrin conjugates for antitumor therapy. J Am Chem Soc 139:1921–1927CrossRefGoogle Scholar
  25. 25.
    Zhao X, Ma X, Sun J, Li D, Yang X (2016) Enhanced catalytic activities of surfactant-assisted exfoliated WS2 Nanodots for hydrogen evolution. ACS Nano 10:2159–2166CrossRefGoogle Scholar
  26. 26.
    Chen WY, Chang HY, Lu JK, Huang YC, Harroun SG, Tseng YT, Li YJ, Huang CC, Chang HT (2016) Self-assembly of antimicrobial peptides on gold Nanodots: against multidrug-resistant Bacteria and wound-healing application. Adv Funct Mater 25:7189–7199CrossRefGoogle Scholar
  27. 27.
    Ni D, Ding H, Liu S, Yue H, Bao Y, Wang Z, Su Z, Wei W, Ma G (2015) Superior Intratumoral penetration of paclitaxel Nanodots strengthens tumor restriction and metastasis prevention. Small 11:2518–2526CrossRefGoogle Scholar
  28. 28.
    Moan J, Wold E (1979) Detection of singlet oxygen production by ESR. Nature 279:450–451CrossRefGoogle Scholar
  29. 29.
    Lavi R, Sinyakov M, Samuni A, Shatz S, Friedmann H, Shainberg A, Breitbart H, Lubart R (2004) ESR detection of 1O2 reveals enhanced redox activity in illuminated cell cultures. Free Radic Res Commun 38:893–902CrossRefGoogle Scholar
  30. 30.
    Wang X, Li J, Wang Y, Koenig L, Gjyrezi A, Giannakakou P, Shin EH, Tighiouart M, Chen ZG, Nie S (2011) A folate receptor-targeting nanoparticle minimizes drug resistance in a human cancer model. ACS Nano 5:6184–6194CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of OtolaryngologyThe First Affiliated Hospital, Sun Yat-Sen UniversityGuangzhouChina
  2. 2.Department of OtolaryngologyShenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen UniversityShenzhenChina
  3. 3.Institute of Translational Medicine, Shenzhen Second People’s HospitalThe First Affilication Hospital of Shenzhen University, Health Science CenterShenzhenChina
  4. 4.State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical GenomicsPeking University Shenzhen Graduate SchoolShenzhenChina
  5. 5.Department of Pharmacology and Proteomics CenterZhongshan School of Medicine, Sun Yat-sen UniversityGuangzhouChina

Personalised recommendations