Advertisement

Microchimica Acta

, 186:163 | Cite as

Yellow-emissive carbon dots as a fluorescent probe for chromium(VI)

  • Félicité Pacifique Mutuyimana
  • Juanjuan Liu
  • Stanislas Nsanzamahoro
  • Min Na
  • Hongli Chen
  • Xingguo ChenEmail author
Original Paper
  • 36 Downloads

Abstract

The authors describe a one-step method for the preparation of yellow fluorescent carbon dots (CDs) starting from 4-aminoacetanilide hydrochloride and 4-acetamidobenzaldehyde. The CDs have excitation/emission peaks at 470/550 nm, good water solubility, salt-tolerance and photostability. Their fluorescence is quenched by hexavalent chromium [Cr(VI)] via static quenching. Fluorescence intensity drops linearly in the 1 to 400 μM Cr(VI) concentration range, and the limit of detection is 0.13 μM. This method is selective for Cr(VI) over potential metal ion interferences and was successfully applied to the detection of Cr(VI) in spiked water and biological tissue samples. Recoveries from spiked samples ranged from 97.7% to 103.8%.

Graphical abstract

Schematic presentation of (a) the preparation of the CD fluorescent probe and (b), the principle of Cr(VI) determination

Keywords

Yellow fluorescence Nanoparticles Fluorometry Chromate Static quenching Stern-Volmer plot Water samples Fish tissues Biological tissues 

Notes

Acknowledgements

The authors are grateful for financial support from the National Natural Science Foundation of China (No. 21675068).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3284_MOESM1_ESM.doc (4.2 mb)
ESM 1 (DOC 4.17 mb)

References

  1. 1.
    Liu H, Ye T, Mao C (2007) Fluorescent carbon nanoparticles derived from candle soot. Angew Chem Int Ed Engl 46:6473–6475CrossRefGoogle Scholar
  2. 2.
    Li H, Huang J, Song Y, Zhang M, Wang H, Lu F, Huang H, Liu Y, Dai X, Gu Z, Yang Z, Zhou R, Kang Z (2018) Degradable carbon dots with broad-spectrum antibacterial activity. ACS Appl Mater Interfaces 10:26936–26946CrossRefGoogle Scholar
  3. 3.
    Zhang L, Wang D, Huang H, Liu L, Zhou Y, Xia X, Deng K, Liu X (2016) Preparation of gold–carbon dots and ratiometric fluorescence cellular imaging. ACS Appl Mater Interfaces 8:6646–6655CrossRefGoogle Scholar
  4. 4.
    Li H, Kang Z, Liu Y, Lee ST (2012) Carbon nanodots: synthesis, properties and applications. J Mater Chem 22:24230–24253CrossRefGoogle Scholar
  5. 5.
    Qian Z, Ma J, Shan X, Feng H, Shao L, Chen J (2014) Highly luminescent N-doped carbon quantum dots as an effective multifunctional fluorescence sensing platform. Chem 20:2254–2263CrossRefGoogle Scholar
  6. 6.
    Ma Y, Chen Y, Liu J, Han Y, Ma S, Chen X (2018) Ratiometric fluorescent detection of chromium(VI) in real samples based on dual emissive carbon dots. Talanta 185:249–257CrossRefGoogle Scholar
  7. 7.
    Wang H, Na C (2014) Binder-free carbon nanotube electrode for electrochemical removal of chromium. ACS Appl Mater Interfaces 6:20309–20316CrossRefGoogle Scholar
  8. 8.
    Lijuan Z, Chunli X, Baoxin L (2009) Simple and sensitive detection method for chromium(VI) in water using glutathione—capped CdTe quantum dots as fluorescent probes. Microchim Acta 166:61–68CrossRefGoogle Scholar
  9. 9.
    Jordão CP, Pereira JL, Jham GN (1997) Chromium contamination in sediment, vegetation and fish caused by tanneries in the state of Minas Gerais, Brazil. Sci Total Environ 207:1–11CrossRefGoogle Scholar
  10. 10.
    Liu JL, Xu XR, Ding ZH, Peng JX, Jin MH, Wang YS, Hong YG, Yue WZ (2015) Heavy metals in wild marine fish from South China Sea: levels, tissue- and species-specific accumulation and potential risk to humans. Ecotoxicology 24:1583–1592CrossRefGoogle Scholar
  11. 11.
    Loock-Hattingh MM, Beukes JP, Van Zyl PG, Tiedt LR (2015) Cr(VI) and conductivity as indicators of surface water pollution from ferrochrome production in South Africa: four case studies. Metall Mater Trans B Process Metall Mater Process Sci 46:2315–2325CrossRefGoogle Scholar
  12. 12.
    Usda J, Satoh H, Kagaya S (1997) Determination of chromium(III) and chromium(VI) by graphite-furnace atomic absorption spectrometry after coprecipitation with hafnium hydroxide. Anal Sci 13:613–617CrossRefGoogle Scholar
  13. 13.
    Hagendorfer H, Goessler W (2008) Separation of chromium(III) and chromium(VI) by ion chromatography and an inductively coupled plasma mass spectrometer as element-selective detector. Talanta 76:656–661CrossRefGoogle Scholar
  14. 14.
    Arancibia V, Valderrama M, Silva K, Tapia T (2003) Determination of chromium in urine samples by complexation-supercritical fluid extraction and liquid or gas chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 785:303–309CrossRefGoogle Scholar
  15. 15.
    Cathum S, Brown CE, Wong W (2002) Determination of Cr3+, CrO4 2−, and Cr2O7 2− in environmental matrixes by high-performance liquid chromatography with diode-array detection (HPLC-DAD). Anal Bioanal Chem 373:103–110CrossRefGoogle Scholar
  16. 16.
    Jena BK, Raj CR (2008) Highly sensitive and selective electrochemical detection of sub-ppb level chromium(VI) using nano-sized gold particle. Talanta 76:161–165CrossRefGoogle Scholar
  17. 17.
    Zhang Z, Qin W, Liu S (1995) Chemiluminescence flow system for the monitoring of chromium(VI) in water. Anal Chim Acta 318:71–76CrossRefGoogle Scholar
  18. 18.
    Rong M, Lin L, Song X, Wang Y, Zhong Y, Yan J, Feng Y, Zeng X, Chen X (2015) Fluorescence sensing of chromium (VI) and ascorbic acid using graphitic carbon nitride nanosheets as a fluorescent “switch”. Biosens Bioelectron 68:210–217CrossRefGoogle Scholar
  19. 19.
    Lin ZJ, Zheng HQ, Zheng HY, Lin LP, Xin Q, Cao R (2017) Efficient capture and effective sensing of Cr2O7 2− from water using a zirconium metal-organic framework. Inorg Chem 56:14178–14188CrossRefGoogle Scholar
  20. 20.
    Zhang H, Huang Y, Hu Z, Tong C, Zhang Z, Hu S (2017) Carbon dots codoped with nitrogen and sulfur are viable fluorescent probes for chromium(VI). Microchim Acta 184:1547–1553CrossRefGoogle Scholar
  21. 21.
    Han Y, Chen Y, Liu J, Niu X, Ma Y, Ma S, Chen X (2018) Room-temperature synthesis of yellow-emitting fluorescent silicon nanoparticles for sensitive and selective determination of crystal violet in fish tissues. Sensors Actuators B Chem 263:508–516CrossRefGoogle Scholar
  22. 22.
    Mutuyimana FP, Liu J, Na M, Nsanzamahoro S, Rao Z, Chen H, Chen X (2018) Synthesis of orange-red emissive carbon dots for fluorometric enzymatic determination of glucose. Microchim Acta 185:518CrossRefGoogle Scholar
  23. 23.
    Huang S, Qiu H, Zhu F, Lu S, Xiao Q (2015) Graphene quantum dots as on-off-on fluorescent probes for chromium(VI) and ascorbic acid. Microchim Acta 182:1723–1731CrossRefGoogle Scholar
  24. 24.
    Wang F, Hao Q, Zhang Y, Xu Y, Lei W (2016) Fluorescence quenchometric method for determination of ferric ion using boron-doped carbon dots. Microchim Acta 183:273–279CrossRefGoogle Scholar
  25. 25.
    Zhu X, Wu M, Sun J, Zhang X (2008) β-Cyclodextrin-cross-linked polymer as solid phase extraction material coupled graphite furnace atomic absorption spectrometry for separation/analysis of trace copper. Anal Lett 41:2186–2202CrossRefGoogle Scholar
  26. 26.
    Liu L, Feng F, Chin Paau M, Hu Q, Liu Y, Chen Z, Bai Y, Guo F, Choi MMF (2015) Sensitive determination of kaempferol using carbon dots as a fluorescence probe. Talanta 144:390–397CrossRefGoogle Scholar
  27. 27.
    Zhu S, Song Y, Zhao X, Shao J, Zhang J, Yang B (2015) The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Res 8:355–381CrossRefGoogle Scholar
  28. 28.
    Zhang HY, Wang Y, Xiao S, Wang H, Wang JH, Feng L (2017) Rapid detection of Cr(VI) ions based on cobalt(II)-doped carbon dots. Biosens Bioelectron 87:46–52CrossRefGoogle Scholar
  29. 29.
    World Health Organization (‎2017) Guidelines for drinking-water quality: fourth edition incorporating the first addendum. World Health Organization, GenevaGoogle Scholar
  30. 30.
    Zu FL, Yan FY, Bai ZJ, Xu JX, Wang YY, Huang YC, Zhou XG (2017) The quenching of the fluorescence of carbon dots: a review on mechanisms and applications. Microchim Acta 184:1899–1914CrossRefGoogle Scholar
  31. 31.
    Zhang Y, Fang X, Zhao H, Li Z (2018) A highly sensitive and selective detection of Cr(VI) and ascorbic acid based on nitrogen-doped carbon dots. Talanta 181:318–325CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Félicité Pacifique Mutuyimana
    • 1
    • 2
  • Juanjuan Liu
    • 1
    • 2
  • Stanislas Nsanzamahoro
    • 1
    • 2
  • Min Na
    • 1
    • 2
  • Hongli Chen
    • 1
    • 2
  • Xingguo Chen
    • 1
    • 2
    • 3
    Email author
  1. 1.State Key Laboratory of Applied Organic ChemistryLanzhou UniversityLanzhouChina
  2. 2.Department of ChemistryLanzhou UniversityLanzhouChina
  3. 3.Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu ProvinceLanzhouChina

Personalised recommendations