Advertisement

Microchimica Acta

, 186:152 | Cite as

Fluorometric nanoprobes for simultaneous aptamer-based detection of carcinoembryonic antigen and prostate specific antigen

  • Yali Sun
  • Jianfeng Fan
  • Linyan Cui
  • Wei Ke
  • Fangjie Zheng
  • Yuan ZhaoEmail author
Original Paper
  • 16 Downloads

Abstract

A “turn-on” fluorometric assay based on the combined effects of fluorescence resonance energy transfer (FRET) and internal filter effect (IFE) is described for the rapid and ultrasensitive detection of both carcinoembryonic antigen (CEA) and prostate specific antigen (PSA). Their unique porous structures and high specific surface enable mesoporous silica nanoparticles (MSNs) to load a large number of CdTe quantum dots (QDs). These amplify the fluorescence signal and provide a platform to fabricate more distinctly fluorescent MSNs (QD-MSNs). Two kinds of QD-MSNs with the maximum emission wavelengths at 590 nm (orange) and 731 nm (dark red) were fabricated and served as two types of fluorescent probes for the dual detection. Two aptamers were covalently connected to fluorescent MSNs as the recognition unit to warrant the selectivity of assay. The fluorescence of QD-MSNs can be quenched by molybdenum disulfide nanosheets (MoS2) due to FRET mechanism, IFE also contributed to the the reduction of fluorescence intensity. The fluorescence of QD-MSNs was further recovered in the presence of CEA and PSA attributing to the excellent specificity of aptamers. A “turn-on” fluorescent two-channel nanoprobe is introduced for simultaneous quantification of CEA and PSA. The respective limits of detection (at S/N = 3) are 0.7 fg•mL−1 for CEA and 0.9 fg•mL−1 for PSA.

Graphical abstract

Schematic presentation of the turn-on fluorescent nanoprobes for simultaneous detection of CEA and PSA.

Keywords

Fluorescence MoS2 nanosheets Dual detection CEA PSA 

Notes

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2017YFC1601700), Natural Science Foundation of Jiangsu Province (BK20171136), China Postdoctoral Science Foundation (2015 M570405, 2016 T90417), and the 111 Project (B13025).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3281_MOESM1_ESM.docx (4.7 mb)
ESM 1 (DOCX 4.66 MB)

References

  1. 1.
    Qin W, Wang K, Xiao K, Hou Y, Lu W, Xu H, Wo Y, Feng S, Cui D (2017) Carcinoembryonic antigen detection with “handing”- controlled fluorescence spectroscopy using a color matrix for point-of-care applications. Biosens Bioelectron 90:50–515CrossRefGoogle Scholar
  2. 2.
    Hong M, Lan W, Yan Z (2016) Label-free fluorimetric detection of CEA using carbon dots derived from tomato juice. Biosens Bioelectron 86:83–89CrossRefGoogle Scholar
  3. 3.
    Hao T, Wu X, Xu L, Liu L, Ma W, Kuang H, Xu C (2017) Ultrasensitive detection of prostate-specific antigen and thrombin based on gold-upconversion nanoparticle assembled pyramids. Small 13(19).  https://doi.org/10.1002/smll.201603944
  4. 4.
    Hong W, Lee S, Cho Y (2016) Dual-responsive immunosensor that combines colorimetric recognition and electrochemical response for ultrasensitive detection of cancer biomarkers. Biosens Bioelectron 86:920–926CrossRefGoogle Scholar
  5. 5.
    Ito Y, Hashimoto M, Hirota K, Ohkura N, Morikawa H, Nishikawa H, Tanaka A, Furu M, Ito H, Fujii T (2014) Detection of T cell responses to aubiquitous cellular protein in autoimmune disease. Science 346:363–368CrossRefGoogle Scholar
  6. 6.
    Liang J, Liu H, Huang C (2015) Aggregated silver nanoparticles based surface-enhanced raman scattering enzyme-linked immunosorbent assay for ultrasensitive detection of protein biomarkers and small molecules. Anal Chem 87:5790–5796CrossRefGoogle Scholar
  7. 7.
    Wang H, Wang X, Wang J, Fu W, Yao C (2016) A SPR biosensor based on signal amplification using antibody-QD conjugates for quantitative determination of multiple tumor markers. Sci Rep 6.  https://doi.org/10.1038/srep33140
  8. 8.
    Zhang A, Guo W, Ke H, Zhang X, Zhang H, Huang C, Yang D, Jia N, Cui D (2018) Sandwich-format ECL immunosensor based on Au star@BSA-Luminol nanocomposites for determination of human chorionic gonadotropin. Biosens Bioelectron 101:219–226CrossRefGoogle Scholar
  9. 9.
    Hasanzadeh M, Shadjou N (2017) Advanced nanomaterials for use in electrochemical and optical immunoassays of carcinoembryonic antigen. A review. Microchim Acta 184:38–414CrossRefGoogle Scholar
  10. 10.
    Yang R, Liu Y, Ye H, Qiu B, Lin Z, Guo L (2016) Surface enhanced electrochemiluminescence immunoassay for highly sensitive detection of disease biomarkers in whole blood. Electroanalysis 28:1783–1786CrossRefGoogle Scholar
  11. 11.
    Zhao Y, Trewyn BG, Slowing II, Lin VS (2009) Mesoporous silica nanoparticle-based double drug delivery system for glucose-responsive controlled release of insulin and cyclic AMP. J Am Chem Soc 131:8398–8400CrossRefGoogle Scholar
  12. 12.
    Viveroescoto JL, Slowing II, Wu CW, Lin VS (2009) Photoinduced intracellular controlled release drug delivery in human cells by gold-capped mesoporous silica nanosphere. J Am Chem Soc 131:3462–3463CrossRefGoogle Scholar
  13. 13.
    Zhao Y, Hao CL, Ma W, Yong Q, Yan W, Kuang H, Wang L, Xu CL (2011) Magnetic bead-based multiplex DNA sequence detection of genetically modified organisms using quantum dot-encoded silicon dioxide nanoparticles. J Phys Chem C 115:20134–20140CrossRefGoogle Scholar
  14. 14.
    Shi J, Guo J, Bai G (2015) A graphene oxide based fluorescence resonance energy transfer (FRET) biosensor for ultrasensitive detection of botulinum neurotoxin A (BoNT/A) enzymatic activity. Biosens Bioelectron 65:238–244CrossRefGoogle Scholar
  15. 15.
    Li F, Huang Y, Yang Q (2010) A graphene-enhanced molecular beacon for homogeneous DNA detection. Nanoscale 2:1021–1026CrossRefGoogle Scholar
  16. 16.
    Lu CH, Li J, Liu JJ (2010) Increasing the sensitivity and single-base mismatch selectivity of the molecular beacon using graphene oxide as the “nanoquencher”. Chem Eur J 16:4889–4894CrossRefGoogle Scholar
  17. 17.
    Huang J, Ye L, Gao X, Li H, Xu J, Li Z (2015) Molybdenum disulfide-based amplified fluorescence DNA detection using hybridization chain reactions. J Mater Chem B 3:2395–2401CrossRefGoogle Scholar
  18. 18.
    Zou L, Gu Z, ZhangN ZY, Fang Z, Zhu W, Zhong X (2008) Ultrafast synthesis of highly luminescent green- to near infrared-emitting CdTe nanocrystals in aqueous phase. J Mater Chem 18:2807–2815CrossRefGoogle Scholar
  19. 19.
    Pan L, He Q, Liu J (2012) Nuclear-targeted drug delivery of TAT peptide-conjugated monodisperse mesoporous silica nanoparticles. J Am Chem Soc 134:5722–5725CrossRefGoogle Scholar
  20. 20.
    BackesC HTM, Kelly A (2016) Guidelines for exfoliation, characterisation and processing of layered materials produced by liquid exfoliation. Chem Mater 29:243–255CrossRefGoogle Scholar
  21. 21.
    Kim TI, Kwon B, Yoon J, Park IJ, Bang GS, Park YK, Seo YS, Choi YS (2017) Antibacterial activities of graphene oxide-molybdenum disulfide nanocomposite films. ACS Appl Mater Interfaces 9:7908–7917CrossRefGoogle Scholar
  22. 22.
    Gao YY, Dong QQ, Lan S, Cai Q, Simalou O, Zhang SQ, Gao G, Chokto H, Dong A (2015) Decorating CdTe QD-embedded mesoporous silica nanospheres with Ag NPs to prevent bacteria invasion for enhanced anticounterfeit applications. ACS Appl Mater Interfaces 2015(7):10022–10033CrossRefGoogle Scholar
  23. 23.
    Nguyen TP, Sohn W, Oh JH, Jang HW, Kim SY (2016) The size-dependent properties of two-dimensional MoS2 and WS2. J Phys Chem C 120:10078–10085CrossRefGoogle Scholar
  24. 24.
    Zu FL, Yan FY, Bai ZJ, Xu JX, Wang YY, Huang YC, Zhou XG (2017) The quenching of the fluorescence of carbon dots: a review on mechanisms and applications. Microchim Acta 184:1899–1914CrossRefGoogle Scholar
  25. 25.
    YaoY GW, Zhang J (2016) Reverse fluorescence enhancement and colorimetric bimodal signal readout immunochromatography teststrip for ultrasensitive large-scale screening and postoperative monitoring. ACS Appl Mater Interfaces 8:22963–22970CrossRefGoogle Scholar
  26. 26.
    Zhou ZM, Feng Z, Zhou J (2015) Capillary electrophoresis-chemiluminescenc detection for carcino-embryonic antigen based on aptamer/graphene oxide structure. Biosens Bioelectron 64:493–498CrossRefGoogle Scholar
  27. 27.
    Zheng Y, Chen H, Liu X, Jiang J, Luo Y, Shen G, Yu R (2008) An ultrasensitive chemiluminescence immunosensor for PSA based on the enzyme encapsulated liposome. Talanta 77:809–814CrossRefGoogle Scholar
  28. 28.
    Zhao Y, Yang YX, Sun YL, Cui LY, Zheng FJ, Zhang JR, Song QJ, Xu CL (2017) Shell-encoded Au nanoparticles with tunable electroactivity for specific dual disease biomarkers detection. Biosens Bioelectron 99:193–200CrossRefGoogle Scholar
  29. 29.
    Wang X, Rui X, Xu S, Wang YG, Ren X, Du B, Wu D, Wei Q (2017) Using reduced graphene oxide-Ca:CdSe nanocomposite to enhance photoelectrochemical activity of gold nanoparticles functionalized tungsten oxide for highly sensitive prostate specific antigen detection. Biosens Bioelectron 96:239–245CrossRefGoogle Scholar
  30. 30.
    Yu Q, Zhan X, Liu K, Lv H, Duan YX (2013) Plasma-enhanced antibody immobilization for the development of a capillary-based carcinoembryonic antigen immunosensor using laser-induced fluorescence spectroscopy. Anal Chem 85:4578–4585CrossRefGoogle Scholar
  31. 31.
    Yang T, Hou P, Zheng LL, Zhan L, Gao PF, Li YF, Huang CZ (2017) Surface-engineered quantum dots/electrospun nanofibers as a networked fluorescence detection platform toward biomarkers. Nanoscale 9:17020–17028CrossRefGoogle Scholar
  32. 32.
    Xing TY, Zhao J, Weng GJ, Zhu J, Li JJ, Zhao JW (2017) Specific detection of carcinoembryonic antigen based onfluorescence quenching of hollow porous gold nanoshells withroughened surface. ACS Appl Mater Interfaces 9:36632–36641CrossRefGoogle Scholar
  33. 33.
    Rissin DM, Kan CW, Campbell TG, Howes SC, Fournier DR (2010) Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nat Biotechnol 28:595–599CrossRefGoogle Scholar
  34. 34.
    Farka Z, Mickert MJ, Hlavacek A, Skladal P, Gorris HH (2017) Single molecule upconversion-linked immunosorbent assay with extended dynamic range for the sensitive detection of diagnostic biomarkers. AnalChem 89:11825–11830Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Yali Sun
    • 1
  • Jianfeng Fan
    • 2
  • Linyan Cui
    • 1
  • Wei Ke
    • 1
  • Fangjie Zheng
    • 1
  • Yuan Zhao
    • 1
    Email author
  1. 1.Key Lab of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material EngineeringJiangnan UniversityWuxiChina
  2. 2.Wuxi Children’s HospitalJiangsuChina

Personalised recommendations