Microchimica Acta

, 186:235 | Cite as

A nanocomposite consisting of gold nanobipyramids and multiwalled carbon nanotubes for amperometric nonenzymatic sensing of glucose and hydrogen peroxide

  • He Mei
  • Xuedong Wang
  • Tai Zeng
  • Ling Huang
  • Qun Wang
  • Daoping Ru
  • Tongliang Huang
  • Falin Tian
  • Huimin WuEmail author
  • Jimin GaoEmail author
Original Paper


Gold nanobipyramids were synthesized by a seed-mediated growth method and then supported by multi-walled carbon nanotubes (denoted as AuNBP/MWCNTs). The electrocatalytic activity of the AuNBP/MWCNTs on a glassy carbon electrode (GCE) towards direct glucose oxidation and hydrogen peroxide reduction was superior to that of AuNBPs and MWCNTs. The modified GCE, operated at a typical working voltage of +0.15 V (vs. SCE) and in 0.1 M NaOH solution, exhibits a linear response in the 10 μM to 36.7 mM glucose concentration range with a 3.0 μM detection limit (at S/N = 3) and a sensitivity of 101.2 μA mM−1 cm−2. It also demonstrates good sensitivity towards hydrogen peroxide in at pH 7 solution at a working potential of −0.50 V (vs. SCE), with a linear response range from 5.0 μM to 47.3 mM, a sensitivity of 170.6 μA mM−1 cm−2 and a detection limit of 1.5 μM.

Graphical abstract

A electrochemical sensing platform based on the use of gold nanobipyramids and multi-walled carbon nanotubes nanocomposites (AuNBP/MWCNTs) is described for the determination of glucose and hydrogen peroxide.


Nanomaterials Electrocatalyst Electrochemical sensor Non-enzymatic sensor Cyclic voltammetry Chronoamperometry Real sample analysis 



This work was partially supported by the Natural Science Foundation of China (81573110, 31270958), the Chinese National 863 plan (2012AA02A407), the Natural Science Foundation of Zhejiang Province (LY14H190004, LY13H100003, LY15H160066), the Key Science and Technology Innovation Team of Zhejiang Province, Wenzhou Municipal Research Program (Y20160009, Y20160074), and Natural Science Foundation of Zhejiang Province (LQ17B030003).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3272_MOESM1_ESM.docx (2.2 mb)
ESM 1 (DOCX 2278 kb)


  1. 1.
    Wang CH, Yang CH, Chang JK (2017) High-selectivity electrochemical non-enzymatic sensors based on graphene/Pd nanocomposites functionalized with designated ionic liquids. Biosens Bioelectron 89:483–488. CrossRefPubMedGoogle Scholar
  2. 2.
    Dhara K, Mahapatra DR (2018) Electrochemical nonenzymatic sensing of glucose using advanced nanomaterials. Microchim Acta 185:49–81. CrossRefGoogle Scholar
  3. 3.
    Yu ZY, Li HJ, Zhang XM, Liu NK, Tan WL, Zhang X, Zhang LL (2016) Facile synthesis of NiCo2O4@polyaniline core-shell nanocomposite for sensitive determination of glucose. Biosens Bioelectron 75:161–165. CrossRefPubMedGoogle Scholar
  4. 4.
    Zhong SL, Zhuang JY, Yang DP, Tang DP (2017) Eggshell membrane-templated synthesis of 3D hierarchical porous Au networks for electrochemical nonenzymatic glucose sensor. Biosens Bioelectron 96:26–32. CrossRefPubMedGoogle Scholar
  5. 5.
    Kangkamano T, Numnuam A, Limbut W, Kanatharana P, Thavarungkul P (2017) Chitosan Cryogel with embedded gold nanoparticles decorated multiwalled carbon nanotubes modified electrode for highly sensitive flow based non-enzymatic glucose sensor. Sensors Actuators B Chem 246:854–863. CrossRefGoogle Scholar
  6. 6.
    Fu YY, Liang FF, Tian HF, Hu JB (2014) Nonenzymatic glucose sensor based on ITO electrode modified with gold nanoparticles by ion implantation. Electrochim Acta 120:314–318. CrossRefGoogle Scholar
  7. 7.
    Luo Y, Kong FY, Li C, Shi JJ, Lv WX, Wang W (2016) One-pot preparation of reduced graphene oxide-carbon nanotube decorated with Au nanoparticles based on protein for non-enzymatic electrochemical sensing of glucose. Sensors Actuators B Chem 234:625–632. CrossRefGoogle Scholar
  8. 8.
    Guo XM, Deng HM, Zhou H, Fan TX, Gao ZQ (2015) Detection of glucose with a lamellar-ridge architectured gold modified electrode. Sensors Actuators B Chem 206:721–727. CrossRefGoogle Scholar
  9. 9.
    Tang YR, Liu Q, Yang X, Wei M, Zhang MX (2017) Copper oxide coated gold nanorods like a film: A facile route to nanocomposites for electrochemical application. J Electroanal Chem 806:8–14.
  10. 10.
    Pang P, Yang Z, Xiao S, Xie J, Zhang Y, Gao Y (2014) Nonenzymatic amperometric determination of hydrogen peroxide by graphene and gold nanorods nanocomposite modified electrode. J Electroanal Chem 727:27–33. CrossRefGoogle Scholar
  11. 11.
    Li QQ, Cui SZ, Yan XL (2012) Electrocatalytic oxidation of glucose on nanoporous gold membranes. J Solid State Electrochem 16:1099–1104. CrossRefGoogle Scholar
  12. 12.
    Tang Y, Cheng WL (2013) Nanoparticle-modified electrode with size- and shape-dependent electrocatalytic activities. Langmuir 29:3125–3132. CrossRefPubMedGoogle Scholar
  13. 13.
    Wang JF, Gong JX, Xiong YS, Yang JD, Gao Y, Liu YL, Lu XQ, Tang ZY (2011) Shape-dependent electrocatalytic activity of monodispersed gold nanocrystals toward glucose oxidation. Chem Commun 47:6894–6896. CrossRefGoogle Scholar
  14. 14.
    Wu HL, Kuo CH, Huang MH (2010) Seed-mediated synthesis of gold nanocrystals with systematic shape evolution from cubic to trisoctahedral and rhombic dodecahedral structures. Langmuir 26:12307–12313. CrossRefPubMedGoogle Scholar
  15. 15.
    Niu WX, Zheng SL, Wang DW, Liu XQ, Li HJ, Han S, Chen J, Tang ZY, Xu GB (2009) Selective synthesis of single-crystalline rhombic dodecahedral, octahedral, and cubic gold nanocrystals. J Am Chem Soc 131:697–703. CrossRefPubMedGoogle Scholar
  16. 16.
    He ZY, Zang SA, Liu Y, He Y, Lei HT (2015) A multi-walled carbon nanotubes-poly(L-lysine) modified enantioselective immunosensor for ofloxacin by using multi-enzyme-labeled gold nanoflower as signal enhancer. Biosens Bioelectron 73:85–92. CrossRefPubMedGoogle Scholar
  17. 17.
    Li Q, Zhuo XL, Li S, Ruan QF, Xu QH, Wang JF (2015) Production of monodisperse gold nanobipyramids with number percentages approaching 100% and evaluation of their Plasmonic properties. Adv Opt Mater 3:801–812. CrossRefGoogle Scholar
  18. 18.
    Feng J, Chen LM, Xia YZ, Xing J, Li ZH, Qian QP, Wang Y, Wu AG, Zeng LY, Zhou YL (2017) Bioconjugation of gold nanobipyramids for SERS detection and targeted photothermal therapy in breast cancer. ACS Biomater Sci Eng 3:608–618. CrossRefGoogle Scholar
  19. 19.
    Karra S, Wooten M, Griffith W, Gorski W (2016) Morphology of gold nanoparticles and electrocatalysis of glucose oxidation. Electrochim Acta 218:8–14. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Han L, Zhang S, Han L, Yang DP, Hou C, Liu A (2014) Porous gold cluster film prepared from Au@BSA microspheres for electrochemical nonenzymatic glucose sensor. Electrochim Acta 138:109–114. CrossRefGoogle Scholar
  21. 21.
    Liu X, Mao LG, Wang YL, Shi XB, Liu Y, Yang Y, He Z (2016) Electrochemical sensor based on imprinted sol-gel polymer on Au NPs-MWCNTs-CS modified electrode for the determination of acrylamide. Food Anal Methods 9:114–121. CrossRefGoogle Scholar
  22. 22.
    Xu ML, Song YH, Ye YH, Gong CC, Shen Y, Wang LY, Wang L (2017) A novel flexible electrochemical glucose sensor based on gold nanoparticles/polyaniline arrays/carbon cloth electrode. Sensors Actuators B Chem 252:1187–1193. CrossRefGoogle Scholar
  23. 23.
    Nantaphol S, Watanabe T, Nomura N, Siangproh W, Chailapakul O, Einaga Y (2017) Bimetallic Pt-Au nanocatalysts electrochemically deposited on boron-doped diamond electrodes for nonenzymatic glucose detection. Biosens Bioelectron 98:76–82. CrossRefPubMedGoogle Scholar
  24. 24.
    Wang J (2008) Electrochemical glucose biosensors. Chem Rev 108:814–825. CrossRefPubMedGoogle Scholar
  25. 25.
    Han L, Yang DP, Liu AH (2015) Leaf-templated synthesis of 3D hierarchical porous cobalt oxide nanostructure as direct electrochemical biosensing interface with enhanced electrocatalysis. Biosens Bioelectron 63:145–152. CrossRefPubMedGoogle Scholar
  26. 26.
    Tang Y, Liu Q, Jiang Z, Yang X, Wei M, Zhang M (2017) Nonenzymatic glucose sensor based on icosahedron AuPd@CuO core shell nanoparticles and MWCNT. Sensors Actuators B Chem 251:1096–1103. CrossRefGoogle Scholar
  27. 27.
    Łuczak T, Bełtowska-Brzezinska M (2011) Gold electrodes modified with gold nanoparticles and thio compounds for electrochemical sensing of dopamine alone and in presence of potential interferents. A comparative study. Microchim Acta 174:19–30. CrossRefGoogle Scholar
  28. 28.
    Soomro RA, Akyuz OP, Ozturk R, Ibupoto ZH (2016) Highly sensitive non-enzymatic glucose sensing using gold nanocages as efficient electrode material. Sensors Actuators B Chem 233:230–236. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • He Mei
    • 1
  • Xuedong Wang
    • 1
  • Tai Zeng
    • 1
  • Ling Huang
    • 1
  • Qun Wang
    • 1
  • Daoping Ru
    • 1
  • Tongliang Huang
    • 1
  • Falin Tian
    • 2
  • Huimin Wu
    • 3
    Email author
  • Jimin Gao
    • 1
    Email author
  1. 1.Department of Environmental Sciences, Zhejiang Provincial Key Laboratory of Watershed Science and HealthWenzhou Medical UniversityWenzhouPeople’s Republic of China
  2. 2.Wenzhou Institute of Biomaterials and EngineeringChinese Academy of SciencesWenzhouPeople’s Republic of China
  3. 3.Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education & College of Chemistry & Chemical EngineeringHubei UniversityWuhanPeople’s Republic of China

Personalised recommendations