Advertisement

Microchimica Acta

, 186:223 | Cite as

A field effect transistor modified with reduced graphene oxide for immunodetection of Ebola virus

  • Xin Jin
  • Hong Zhang
  • Yu-Tao Li
  • Meng-Meng Xiao
  • Zhi-Ling Zhang
  • Dai-Wen Pang
  • Gary WongEmail author
  • Zhi-Yong ZhangEmail author
  • Guo-Jun ZhangEmail author
Original Paper
  • 46 Downloads

Abstract

The authors describe a field effect transistor (FET) based immunoassay for the detection of inactivated ebola virus (EBOV). An equine antibody against the EBOV glycoprotein was immobilized on the surface of the FET that was previously modified with reduced graphene oxide (RGO). The antibody against EBOV was immobilized on the modified FET, and the response to EBOV was measured as a function of the shift of Dirac voltage. The method can detect the EBOV over the concentration range from 2.4 × 10−12 g·mL−1 to 1.2 × 10−7 g·mL−1 and with a limit of detection as low as 2.4 pg·mL−1. The assay has satisfactory specificity and was applied to the quantitation of inactivated EBOV in spiked serum.

Graphical abstract

Schematic presentation of the field effect transistor (FET) modified with reduced graphene oxide (RGO) for Ebola Virus (EBOV) detection. Specific binding between EBOV and the anti-EBOV antibody (Ab) on the FET device leads to obvious current change.

Keywords

Ebola virus Field effect transistor Biosensor Sensitive detection Reduced graphene oxide Immunoreaction 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21475034, 21675041, and 61390504).

Compliance with ethical standards

The author(s) declare that they have no competing interests. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Supplementary material

604_2019_3256_MOESM1_ESM.doc (1 mb)
ESM 1 (DOC 1042 kb)

References

  1. 1.
    Mahanty S, Bray M (2004) Pathogenesis of filoviral haemorrhagic fevers. Lancet Infect Dis 4:487–498CrossRefGoogle Scholar
  2. 2.
    Feldmann H, Geisbert TW (2011) Ebola haemorrhagic fever. Lancet 377:849–862CrossRefGoogle Scholar
  3. 3.
    Takada AJU (2011) Filoviruses. Uirusu 62:197–208CrossRefGoogle Scholar
  4. 4.
    Nkoghe D, Leroy EM, Toung-Mve M, Gonzalez JP (2012) Cutaneous manifestations of filovirus infections. Int J Dermatol 51:1037–1043CrossRefGoogle Scholar
  5. 5.
    Kiley MP, Bowen ETW, Eddy GA, Isaäcson M, Johnson KM, Mccormick JB, Murphy FA, Pattyn SR, Peters D, Prozesky OW (1982) Filoviridae: a taxonomic home for Marburg and Ebola viruses? Intervirology 18:24–32CrossRefGoogle Scholar
  6. 6.
    Niikura M, Ikegami T, Saijo M, Kurane I, Miranda ME, Morikawa S (2001) Detection of ebola viral antigen by enzyme-linked immunosorbent assay using a novel monoclonal antibody to nucleoprotein. J Clin Microbiol 39:3267–3271CrossRefGoogle Scholar
  7. 7.
    Krähling V, Becker D, Rohde C, Eickmann M, Eroğlu Y, Herwig A, Kerber R, Kowalski K, Vergaraalert J, Becker S (2016) Development of an antibody capture ELISA using inactivated Ebola Zaire Makona virus. Med Microbiol Immunol 205:173–183CrossRefGoogle Scholar
  8. 8.
    Ikegami T, Saijo M, Niikura M, Miranda ME, Calaor AB, Hernandez M, Manalo DL, Kurane I, Yoshikawa Y, Morikawa S (2013) Development of an immunofluorescence method for the detection of antibodies to Ebola virus subtype Reston by the use of recombinant nucleoprotein-expressing HeLa cells. Microbiol Immunol 46:633–638CrossRefGoogle Scholar
  9. 9.
    Drosten C, Gottig S, Schilling S, Asper M, Panning M, Schmitz H, Gunther S (2002) Rapid detection and quantification of RNA of ebola and Marburg viruses, Lassa virus, Crimean-Congo hemorrhagic fever virus, rift valley fever virus, dengue virus, and yellow fever virus by real-time reverse transcription-PCR. J Clin Microbiol 40:2323–2330CrossRefGoogle Scholar
  10. 10.
    Kuhn JH, Dodd LE, Wahl-Jensen V, Radoshitzky SR, Bavari S, Jahrling PB (2011) Evaluation of perceived threat differences posed by filovirus variants. Biosecur Bioterror 9:361–371CrossRefGoogle Scholar
  11. 11.
    Semper AE, Broadhurst MJ, Richards J, Foster GM, Simpson AJ, Logue CH, Kelly JD, Miller A, Brooks TJ, Murray M, Pollock NR (2016) Performance of the genexpert ebola assay for diagnosis of ebola virus disease in Sierra Leone: a field evaluation study. PLoS Med 13:e1001980CrossRefGoogle Scholar
  12. 12.
    van Griensven J, Edwards T, de Lamballerie X, Semple MG, Gallian P, Baize S, Horby PW, Raoul H, Magassouba N, Antierens A, Lomas C, Faye O, Sall AA, Fransen K, Buyze J, Ravinetto R, Tiberghien P, Claeys Y, De Crop M, Lynen L, Bah EI, Smith PG, Delamou A, De Weggheleire A, Haba N (2016) Evaluation of convalescent plasma for ebola virus disease in Guinea. N Engl J Med 374:33–42CrossRefGoogle Scholar
  13. 13.
    Wu Z, Hu J, Zeng T, Zhang ZL, Chen J, Wong G, Qiu X, Liu W, Gao GF, Bi Y, Pang DW (2017) Ultrasensitive ebola virus detection based on electroluminescent nanospheres and immunomagnetic separation. Anal Chem 89:2039–2048CrossRefGoogle Scholar
  14. 14.
    Tsang M-K, Ye W, Wang G, Li J, Yang M, Hao J (2016) Ultrasensitive detection of ebola virus oligonucleotide based on upconversion nanoprobe/nanoporous membrane system. ACS Nano 10:598–605CrossRefGoogle Scholar
  15. 15.
    Hong SL, Zhang YN, Liu YH, Tang M, Pang DW, Wong G, Chen J, Qiu X, Gao GF, Liu W, Bi Y, Zhang ZL (2018) Cellular-beacon-mediated counting for the ultrasensitive detection of ebola virus on an integrated micromagnetic platform. Anal Chem 90:7310–7317CrossRefGoogle Scholar
  16. 16.
    Duan X, Lieber CM (2015) Nanoscience and the nano-bioelectronics frontier. Nano Res 8:1–22CrossRefGoogle Scholar
  17. 17.
    Song S, Qin Y, He Y, Huang Q, Fan C, Chen HY (2010) Functional nanoprobes for ultrasensitive detection of biomolecules. Chem Soc Rev 39:4234–4243CrossRefGoogle Scholar
  18. 18.
    Zhang A, Lieber CM (2016) Nano-bioelectronics. Chem Rev 116:215–257CrossRefGoogle Scholar
  19. 19.
    Li J, Zhang Y, To S, You L, Sun Y (2011) Effect of nanowire number, diameter, and doping density on nano-FET biosensor sensitivity. ACS Nano 5:6661–6668CrossRefGoogle Scholar
  20. 20.
    Zhang GJ, Zhang G, Chua JH, Chee RE, Wong EH, Agarwal A, Buddharaju KD, Singh N, Gao Z, Balasubramanian N (2008) DNA sensing by silicon nanowire: charge layer distance dependence. Nano Lett 8:1066–1070CrossRefGoogle Scholar
  21. 21.
    Cai B, Huang L, Zhang H, Sun Z, Zhang Z, Zhang GJ (2015) Gold nanoparticles-decorated graphene field-effect transistor biosensor for femtomolar microRNA detection. Biosens Bioelectron 74:329–334CrossRefGoogle Scholar
  22. 22.
    Lei YM, Xiao MM, Li YT, Xu L, Zhang H, Zhang ZY, Zhang GJ (2017) Detection of heart failure-related biomarker in whole blood with graphene field effect transistor biosensor. Biosens Bioelectron 91:1–7CrossRefGoogle Scholar
  23. 23.
    Xie H, Li YT, Lei YM, Liu YL, Xiao MM, Gao C, Pang DW, Huang WH, Zhang ZY, Zhang GJ (2016) Real-time monitoring of nitric oxide at single-cell level with porphyrin-functionalized graphene field-effect transistor biosensor. Anal Chem 88:11115–11122CrossRefGoogle Scholar
  24. 24.
    Zhang C, Xu JQ, Li YT, Huang L, Pang DW, Ning Y, Huang WH, Zhang Z, Zhang GJ (2016) Photocatalysis-induced renewable field-effect transistor for protein detection. Anal Chem 88:4048–4054CrossRefGoogle Scholar
  25. 25.
    Cai B, Wang S, Huang L, Ning Y, Zhang Z, Zhang GJ (2014) Ultrasensitive label-free detection of PNA-DNA hybridization by reduced graphene oxide field-effect transistor biosensor. ACS Nano 8:2632–2638CrossRefGoogle Scholar
  26. 26.
    Zheng C, Huang L, Zhang H, Sun Z, Zhang Z, Zhang GJ (2015) Fabrication of ultrasensitive field-effect transistor DNA biosensors by a directional transfer technique based on CVD-grown graphene. ACS Appl Mater Interfaces 7:16953–16959CrossRefGoogle Scholar
  27. 27.
    Guo D, Zhuo M, Zhang X, Xu C, Jiang J, Gao F, Wan Q, Li Q, Wang T (2013) Indium-tin-oxide thin film transistor biosensors for label-free detection of avian influenza virus H5N1. Anal Chim Acta 773:83–88CrossRefGoogle Scholar
  28. 28.
    Patolsky F, Zheng G, Hayden O, Lakadamyali M, Zhuang X, Lieber CM (2004) Electrical detection of single viruses. PNAS 101:14017–14022CrossRefGoogle Scholar
  29. 29.
    Liu F, Kim YH, Cheon DS, Seo TS (2013) Micropatterned reduced graphene oxide based field-effect transistor for real-time virus detection. Sensors Actuators B Chem 186:252–257CrossRefGoogle Scholar
  30. 30.
    Hao Z, Zhu Y, Wang X, Rotti PG, DiMarco C, Tyler SR, Zhao X, Engelhardt JF, Hone J, Lin Q (2017) Real-time monitoring of insulin using a graphene field-effect transistor aptameric nanosensor. ACS Appl Mater Interfaces 9:27504–27511CrossRefGoogle Scholar
  31. 31.
    Duan XX, Li Y, Rajan NK, Routenberg DA, Modis Y, Reed MA (2012) Quantification of the affinities and kinetics of protein interactions using silicon nanowire biosensors. Nat Nanotechnol 7:401–407CrossRefGoogle Scholar
  32. 32.
    Beeching NJ, Fenech M, Houlihan CF (2014) Ebola virus disease. BMJ 349:g7348CrossRefGoogle Scholar
  33. 33.
    Li BR, Hsieh YJ, Chen YX, Chung YT, Pan CY, Chen YT (2013) An ultrasensitive nanowire-transistor biosensor for detecting dopamine release from living PC12 cells under hypoxic stimulation. J Am Chem Soc 135:16034–16037CrossRefGoogle Scholar
  34. 34.
    Liu JL, Shriver-Lake LC, Anderson GP, Zabetakis D, Goldman ER (2017) Selection, characterization, and thermal stabilization of llama single domain antibodies towards ebola virus glycoprotein. Microb Cell Factories 16:223CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Laboratory MedicineHubei University of Chinese MedicineWuhanPeople’s Republic of China
  2. 2.Teaching and Research Office of Forensic MedicineHubei University of Chinese MedicineWuhanPeople’s Republic of China
  3. 3.Hunan Institute of Advanced Sensing and Information TechnologyXiangtan UniversityXiangtanPeople’s Republic of China
  4. 4.Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular SciencesWuhan UniversityWuhanPeople’s Republic of China
  5. 5.Institut Pasteur of ShanghaiChinese Academy of SciencesShanghaiPeople’s Republic of China
  6. 6.Département de microbiologie-infectiologieetd’immunologieUniversité LavalQuébec CityCanada

Personalised recommendations