Advertisement

Microchimica Acta

, 186:143 | Cite as

A molecularly imprinted polymer with integrated gold nanoparticles for surface enhanced Raman scattering based detection of the triazine herbicides, prometryn and simetryn

  • Mengmeng Yan
  • Yongxin SheEmail author
  • Xiaolin Cao
  • Jun Ma
  • Ge Chen
  • Sihui Hong
  • Yong Shao
  • A. M. Abd EI-Aty
  • Miao Wang
  • Jing WangEmail author
Original Paper
  • 26 Downloads

Abstract

A class-specific molecular imprinted polymer (MIP) is described for simultaneous recognition of prometryn and simetryn prior to their determination via a fingerprint signal (at 974 cm−1 and 1074 cm−1) in the surface enhanced Raman scattering (SERS) spectra that were acquired in the presence of gold nanoparticles. The imprinted nanoparticles were applied to the analysis of rice and wheat samples spiked with both herbicides. The method has fairly good recoveries (72.7–90.9%) with a relative standard deviation of 1.7–7.8%, and a 20 μg·kg−1 limit of detection. The imprint factors (compared to non-imprinted polymers) are 5.3 for prometryn and 4.2 for simetryn (both at 10 μg·mL−1 of the initial solution).

Graphical abstract

A MIP-SERS method was developed for simultaneous detection of triazine herbicides (prometryn and simetryn) in food samples.

Keywords

Simultaneous detection Herbicides Molecular imprint Food safety AuNPs Portable Raman spectrometer Matrix interference Multi-residues Grain 

Notes

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China (contact No. 31471654, 31772071, and 31501571) and the China Agriculture Research System (NO. CARS-05-05A-03).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3254_MOESM1_ESM.docx (1.5 mb)
ESM 1 (DOCX 1.48 mb)

References

  1. 1.
    Nishi K, Ishiuchi M, Morimune K, Ohkawa H (2005) Molecular and immunochemical characteristics of monoclonal and recombinant antibodies selective for the triazine herbicide simetryn and application to environmental analysis. J Agr Food Chem 53(13):5096–5104CrossRefGoogle Scholar
  2. 2.
    Jiang L, Yang H (2009) Prometryne-induced oxidative stress and impact on antioxidant enzymes in wheat. Ecotoxicol Environ Saf 72(6):1687–1693CrossRefGoogle Scholar
  3. 3.
    Kolar V, Deng AP, Franek M (2002) Production and characterization of generic antibodies against s-triazine and sulfonylurea herbicides. Food Agric Immunol 14(2):91–105CrossRefGoogle Scholar
  4. 4.
    Zhou TY, Ding J, Ni L, Yu J, Li HY, Ding H, Chen YH, Ding L (2017) Preparation of magnetic superhydrophilic molecularly imprinted resins for detection of triazines in aqueous samples. J Chromatogr A 1497:38–46CrossRefGoogle Scholar
  5. 5.
    Zhang FS, Zhao Q, Yan X, Li HY, Zhang P, Wang L, Zhou TY, Li Y, Ding L (2016) Rapid preparation of expanded graphite by microwave irradiation for the extraction of triazine herbicides in milk samples. Food Chem 197:943–949CrossRefGoogle Scholar
  6. 6.
    Farajzadeh MA, Feriduni B, Mogaddam MRA (2014) Extraction and enrichment of Triazole and Triazine pesticides from honey using air-assisted liquid-liquid microextraction. J Food Sci 79(10):T2140–T2148CrossRefGoogle Scholar
  7. 7.
    Song D, Yang R, Fang SY, Liu YP, Long F, Zhu AN (2018) SERS based aptasensor for ochratoxin A by combining Fe3O4@Au magnetic nanoparticles and Au-DTNB@Ag nanoprobes with multiple signal enhancement. Microchim Acta 185(10):491–500CrossRefGoogle Scholar
  8. 8.
    Zaleski S, Clark KA, Smith MM, Eilert JY, Doty M, Van Duyne RP (2017) Dentification and quantification of intravenous therapy drugs using Normal Raman spectroscopy and electrochemical surface enhanced Raman spectroscopy. Anal Chem 89(4):2497–2504CrossRefGoogle Scholar
  9. 9.
    Hu YX, Feng SL, Gao F, Li-Chan ECY, Grant E, Lu XN (2015) Detection of melamine in milk using molecularly imprinted polymers-surface enhanced Raman spectroscopy. Food Chem 176:123–129CrossRefGoogle Scholar
  10. 10.
    Bai XR, Zeng Y, Zhou XD, Wang XH, Shen AG, Hu JM (2017) Environmentally safe mercury(II) ions aided zero-background and ultrasensitive SERS detection of Dipicolinic acid. Anal Chem 89(19):10335–10342CrossRefGoogle Scholar
  11. 11.
    Shi RY, Liu XJ, Ying YB (2018) Facing challenges in real-life application of surface-enhanced Raman scattering: design and nanofabrication of surface-enhanced Raman scattering substrates for rapid field test of food contaminants. J Agric Food Chem 66(26):6525–6543CrossRefGoogle Scholar
  12. 12.
    He LL, Haynes CL, Diez-Gonzalez F, Labuza TP (2011) Rapid detection of a foreign protein in milk using IMS-SERS. J Raman Spectrosc 42(6):1428–1434CrossRefGoogle Scholar
  13. 13.
    Lamont EA, He LL, Warriner K, Labuza TP, Sreevatsan S (2011) A single DNA aptamer functions as a biosensor for ricin. Analyst 136:3884–3895CrossRefGoogle Scholar
  14. 14.
    Yin DY, Wang SS, He YJ, Liu J, Zhou M, Ouyang J, Liu BR, Chen HY, Liu Z (2015) Surface-enhanced Raman scattering imaging of cancer cells and tissues via sialic acid-imprinted nanotags. Chem Commun 51(100):17696–17699CrossRefGoogle Scholar
  15. 15.
    Wackerlig J, Lieberzeit PA (2015) Molecularly imprinted polymer nanoparticles in chemical sensing - synthesis, characterisation and application. Sensors Actuators B Chem 207:144–157CrossRefGoogle Scholar
  16. 16.
    Liu YJ, Bao JJ, Zhang L, Chao C, Guo JJ, Cheng YC, Zhu YJ, Xu GJ (2018) Ultrasensitive SERS detection of propranolol based on sandwich nanostructure of molecular imprinting polymers. Sensors Actuators B Chem 255:110–116CrossRefGoogle Scholar
  17. 17.
    Feng SL, Gao F, Chen ZW, Grant E, Kitts DD, Wang S, Lu XN (2013) Determination of alpha-tocopherol in vegetable oils using a molecularly imprinted polymers-surface-enhanced Raman spectroscopic biosensor. J Agric Food Chem 61(44):10467–10475CrossRefGoogle Scholar
  18. 18.
    Cao XL, Zhao FN, Jiang ZJ, Hong SH, Zhang C, She YX, Jin F, Jin MJ, Wang J (2018) Rapid analysis of Bitertanol in agro-products using molecularly imprinted polymers-surface-enhanced Raman spectroscopy. Food Anal Methods 11(5):1435–1443CrossRefGoogle Scholar
  19. 19.
    Feng JY, Hu YX, Grant E, Lu XN (2018) Determination of thiabendazole in orange juice using an MISPE-SERS chemosensor. Food Chem 239:816–822CrossRefGoogle Scholar
  20. 20.
    Wei XD, Zheng DW, Zhang P, Lin TF, Wang HQ, Zhu YW (2018) Surface-enhanced Raman scattering investigation of bovine serum albumin by Au nanoparticles with different sizes. J Appl Biomater Func 16:157–162Google Scholar
  21. 21.
    Zhang QQ, Li XS, Yi WC, Li WT, Bai H, Liu JY, Xi GC (2017) Plasmonic MoO2 nanospheres as a highly sensitive and stable non Noble metal substrate for multicomponent surface-enhanced Raman analysis. Anal Chem 89(21):11765–11771CrossRefGoogle Scholar
  22. 22.
    Xu XM, Ma XY, Wang HT, Wang ZP (2018) Aptamer based SERS detection of Salmonella typhimurium using DNA-assembled gold nanodimers. Microchim Acta 185(7):325–332CrossRefGoogle Scholar
  23. 23.
    Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature Phys Sci 241:20–22CrossRefGoogle Scholar
  24. 24.
    Bonora S, Benassi E, Maris A, Tugnoli V, Ottani S, Di Foggia M (2013) Raman and SERS study on atrazine, prometryn and simetryn triazine herbicides. J Mol Struct 1040:139–148CrossRefGoogle Scholar
  25. 25.
    Jiang ZJ, Li H, Cao XL, Du PF, Shao H, Jin F, Jin MJ, Wang J (2017) Determination of hymexazol in 26 foods of plant origin by modified QuEChERS method and liquid chromatography tandem-mass spectrometry. Food Chem 228:411–419CrossRefGoogle Scholar
  26. 26.
    Sun SX, Li YM, Lv P, Punamiya P, Sarkar D, Dan YM, Ma JR, Zheng Y (2016) Determination of Prometryn in vetiver grass and water using gas chromatography-nitrogen Chemiluminescence detection. J Chromatogr Sci 54(2):97–102CrossRefGoogle Scholar
  27. 27.
    Rodriguez-Gonzalez N, Gonzalez-Castro MJ, Beceiro-Gonzalez E, Muniategui-Lorenzo S (2015) Development of a matrix solid phase dispersion methodology for the determination of triazine herbicides in mussels. Food Chem 173:391–396CrossRefGoogle Scholar
  28. 28.
    Xu SF, Lu HZ, Chen LX (2014) Double water compatible molecularly imprinted polymers applied as solid-phase extraction sorbent for selective preconcentration and determination of triazines in complicated water samples. J Chromatogr A 1350:23–29CrossRefGoogle Scholar
  29. 29.
    Anwar ZM, Ibrahim IA, Abdel-Salam ET, Kamel RM, El-Asfoury MH (2017) A luminescent europium complex for the selective detection of trace amounts of aldicarb sulfoxide and prometryne. J Mol Struct 1135:44–52CrossRefGoogle Scholar
  30. 30.
    Rubira RJG, Camacho SA, Aoki PHB, Paulovich FV, Oliveira ON, Constantino CJL (2016) Probing trace levels of prometryn solutions: from test samples in the lab toward real samples with tap water. J Mater Sci 51(6):3182–3190CrossRefGoogle Scholar
  31. 31.
    Stipicevic S, Fingler S, Zupancic-Kralj L, Drevenkar V (2003) Comparison of gas and high performance liquid chromatography with selective detection for determination of triazine herbicides and their degradation products extracted ultrasonically from soil. J Sep Sci 26(14):1237–1246CrossRefGoogle Scholar
  32. 32.
    Deng Z, Liu HH, Wang YR, Chen X (2015) Single wall carbon nanotubes-oxide test strip for one-step solid phase extraction of simetryn and fast detection using surface enhanced Raman spectroscopy. Anal Methods-Uk 7(5):2190–2195CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Mengmeng Yan
    • 1
    • 2
  • Yongxin She
    • 1
    • 2
    Email author
  • Xiaolin Cao
    • 1
    • 2
  • Jun Ma
    • 1
    • 2
  • Ge Chen
    • 1
    • 2
  • Sihui Hong
    • 1
    • 2
  • Yong Shao
    • 1
    • 2
  • A. M. Abd EI-Aty
    • 3
    • 4
  • Miao Wang
    • 1
    • 2
  • Jing Wang
    • 1
    • 2
    Email author
  1. 1.Institute of Quality Standards & Testing Technology for Agro-ProductsChinese Academy of Agricultural SciencesBeijingPeople’s Republic of China
  2. 2.Key Laboratory of Agro-product Safety and QualityMinistry of AgricultureBeijingPeople’s Republic of China
  3. 3.Department of Pharmacology, Faculty of Veterinary MedicineCairo UniversityGizaEgypt
  4. 4.Department of Medical Pharmacology, Medical FacultyAtaturk UniversityErzurumTurkey

Personalised recommendations