Microchimica Acta

, 186:137 | Cite as

A selective chemiresistive sensor for the cancer-related volatile organic compound hexanal by using molecularly imprinted polymers and multiwalled carbon nanotubes

  • Sajjad Janfaza
  • Maryam Banan Nojavani
  • Maryam NikkhahEmail author
  • Taher Alizadeh
  • Ali Esfandiar
  • Mohammad Reza Ganjali
Original Paper


A chemiresistive sensor is described for the lung cancer biomarker hexanal. A composite consisting of molecularly imprinted polymer nanoparticles and multiwalled carbon nanotubes was used in the sensor that is typically operated at a voltage of 4 V and is capable of selectively sensing gaseous hexanal at room temperature. It works in the 10 to 200 ppm concentration range and has a 10 ppm detection limit (at S/N = 3). The sensor signal recovers to a value close to its starting value without the need for heating even after exposure to relatively high levels of hexanal.

Graphical abstract

Schematic presentation of a chemiresistive sensor for detection of hexanal, a cancer biomarker. The hexanal-imprinted polymeric nanoparticles were synthesized, mixed with multiwalled carbon nanotubes and coated on the surface of an interdigitated electrode to produce a nanocomposite chemiresistor gas sensor for hexanal.


Chemiresistor Gas sensor Nanocomposite Lung cancer MWCNTs 



Authors express their gratitude to Geoffrey Barrow for language revision and his valuable comments. We would like to thank Dr. Moslem Shojaee for sharing his experience with the experimental setup.

Compliance with ethical standards

This study was funded by research council of Tarbiat Modares University.

Supplementary material

604_2019_3241_MOESM1_ESM.doc (2.1 mb)
ESM 1 (DOC 2114 kb)


  1. 1.
    Phillips M, Cataneo RN, Ditkoff BA, Fisher P, Greenberg J, Gunawardena R, Kwon CS, Tietje O, Wong C (2006) Prediction of breast cancer using volatile biomarkers in the breath. Breast Cancer Res Treat 99(1):19–21PubMedCrossRefGoogle Scholar
  2. 2.
    Saalberg Y, Wolff M (2016) VOC breath biomarkers in lung cancer. Clin Chim Acta 459:5–9PubMedCrossRefGoogle Scholar
  3. 3.
    Janfaza S, Banan Nojavani M, Khorsand B, Nikkhah M, Zahiri J (2017) Cancer odor database (COD): a critical databank for cancer diagnosis research. Database 2017Google Scholar
  4. 4.
    Haick H, Broza YY, Mochalski P, Ruzsanyi V, Amann A (2014) Assessment, origin, and implementation of breath volatile cancer markers. Chem Soc Rev 43(5):1423–1449PubMedCrossRefGoogle Scholar
  5. 5.
    Li N, Deng C, Yin X, Yao N, Shen X, Zhang X (2005) Gas chromatography–mass spectrometric analysis of hexanal and heptanal in human blood by headspace single-drop microextraction with droplet derivatization. Anal Biochem 342(2):318–326PubMedCrossRefGoogle Scholar
  6. 6.
    Chen F, Wang C, Zhang M, Zhang X, Liu Y, Ye J, Chu Q (2014) Sensitive determination of endogenous hexanal and heptanal in urine by hollow-fiber liquid-phase microextraction prior to capillary electrophoresis with amperometric detection. Talanta 119:83–89PubMedCrossRefGoogle Scholar
  7. 7.
    Fuchs P, Loeseken C, Schubert JK, Miekisch W (2010) Breath gas aldehydes as biomarkers of lung cancer. Int J Cancer 126(11):2663–2670PubMedGoogle Scholar
  8. 8.
    Yoshizumi T, Goda T, Matsumoto A, Miyahara Y (2018) Gas-sensitive field-effect transistor incorporating polymer layer and porous metal electrode in the gate structure. Sens Mater 30(5):1001–1008Google Scholar
  9. 9.
    Park J, Lim JH, Jin HJ, Namgung S, Lee SH, Park TH, Hong S (2012) A bioelectronic sensor based on canine olfactory nanovesicle–carbon nanotube hybrid structures for the fast assessment of food quality. Analyst 137(14):3249–3254PubMedCrossRefGoogle Scholar
  10. 10.
    Jha SK, Hayashi K (2015) Polyacrylic acid polymer and aldehydes template molecule based MIPs coated QCM sensors for detection of pattern aldehydes in body odor. Sensors Actuators B Chem 206:471–487CrossRefGoogle Scholar
  11. 11.
    Fratoddi I, Venditti I, Cametti C, Russo MV (2015) Chemiresistive polyaniline-based gas sensors: a mini review. Sensors Actuators B Chem 220:534–548CrossRefGoogle Scholar
  12. 12.
    Salunke RS, Kasar CK, Bangar MA, Chavan PG, Shirale DJ (2017) Electrodeposition of gold nanoparticles decorated single polypyrrole nanowire for arsenic detection in potable water: a chemiresistive sensor device. J Mater Sci Mater Electron 28(19):14672–14677CrossRefGoogle Scholar
  13. 13.
    Gaikwad S, Bodkhe G, Deshmukh M, Patil H, Rushi A, Shirsat MD, Koinkar P, Kim Y-H, Mulchandani A (2015) Chemiresistive sensor based on polythiophene-modified single-walled carbon nanotubes for detection of NO 2. Mod Phys Lett B 29(06n07):1540046CrossRefGoogle Scholar
  14. 14.
    Lei W, Si W, Xu Y, Gu Z, Hao Q (2014) Conducting polymer composites with graphene for use in chemical sensors and biosensors. Microchim Acta 181(7–8):707–722CrossRefGoogle Scholar
  15. 15.
    Salcedo ARM, Sevilla FB (2018) Reversible chemiresistive sensing of ultra-low levels of elemental mercury vapor using thermally reduced graphene oxide. Microchim Acta 185(6):289CrossRefGoogle Scholar
  16. 16.
    Tian J, Yang G, Jiang D, Su F, Zhang Z (2016) A hybrid material consisting of bulk-reduced TiO2, graphene oxide and polyaniline for resistance based sensing of gaseous ammonia at room temperature. Microchim Acta 183(11):2871–2878CrossRefGoogle Scholar
  17. 17.
    Alizadeh T (2010) Chemiresistor sensors array optimization by using the method of coupled statistical techniques and its application as an electronic nose for some organic vapors recognition. Sensors Actuators B Chem 143(2):740–749CrossRefGoogle Scholar
  18. 18.
    Alizadeh T, Rezaloo F (2013) Toluene chemiresistor sensor based on nano-porous toluene-imprinted polymer. Int J Environ Anal Chem 93(8):919–934CrossRefGoogle Scholar
  19. 19.
    Alizadeh T, Hamedsoltani L (2014) Graphene/graphite/molecularly imprinted polymer nanocomposite as the highly selective gas sensor for nitrobenzene vapor recognition. J Environ Chem Eng 2(3):1514–1526CrossRefGoogle Scholar
  20. 20.
    Maier NM, Lindner W (2007) Chiral recognition applications of molecularly imprinted polymers: a critical review. Anal Bioanal Chem 389(2):377–397PubMedCrossRefGoogle Scholar
  21. 21.
    Haupt K, Linares AV, Bompart M, Bui BTS (2011) Molecularly imprinted polymers. In: Molecular imprinting. Springer, Berlin, pp 1–28Google Scholar
  22. 22.
    Cheong WJ, Yang SH, Ali F (2013) Molecular imprinted polymers for separation science: a review of reviews. J Sep Sci 36(3):609–628PubMedCrossRefGoogle Scholar
  23. 23.
    Ye L, Cormack PA, Mosbach K (1999) Molecularly imprinted monodisperse microspheres for competitive radioassay. Anal Commun 36(2):35–38CrossRefGoogle Scholar
  24. 24.
    Piacham T, Nantasenamat C, Isarankura-Na-Ayudhya C, Prachayasittikul V (2013) Synthesis and computational investigation of molecularly imprinted nanospheres for selective recognition of alpha-tocopherol succinate. EXCLI J 12:701PubMedPubMedCentralGoogle Scholar
  25. 25.
    Bokobza L (2007) Multiwall carbon nanotube elastomeric composites: a review. Polymer 48(17):4907–4920CrossRefGoogle Scholar
  26. 26.
    Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H (2000) Nanotube molecular wires as chemical sensors. Science 287(5453):622–625PubMedCrossRefGoogle Scholar
  27. 27.
    Jang Y-T, Moon S-I, Ahn J-H, Lee Y-H, Ju B-K (2004) A simple approach in fabricating chemical sensor using laterally grown multi-walled carbon nanotubes. Sensors Actuators B Chem 99(1):118–122CrossRefGoogle Scholar
  28. 28.
    Alizadeh T, Azizi S (2016) Graphene/graphite paste electrode incorporated with molecularly imprinted polymer nanoparticles as a novel sensor for differential pulse voltammetry determination of fluoxetine. Biosens Bioelectron 81:198–206PubMedCrossRefGoogle Scholar
  29. 29.
    Shlomi D, Abud M, Liran O, Bar J, Gai-Mor N, Ilouze M, Onn A, Ben-Nun A, Haick H, Peled N (2017) Detection of lung cancer and EGFR mutation by electronic nose system. J Thorac Oncol 12(10):1544–1551PubMedCrossRefGoogle Scholar
  30. 30.
    Peng G, Tisch U, Adams O, Hakim M, Shehada N, Broza YY, Billan S, Abdah-Bortnyak R, Kuten A, Haick H (2009) Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat Nanotechnol 4(10):669–673PubMedCrossRefGoogle Scholar
  31. 31.
    Peng G, Hakim M, Broza YY, Billan S, Abdah-Bortnyak R, Kuten A, Tisch U, Haick H (2010) Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors. Br J Cancer 103(4):542–551PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Miekisch W, Schubert JK, Noeldge-Schomburg GFE (2004) Diagnostic potential of breath analysis—focus on volatile organic compounds. Clin Chim Acta 347(1):25–39PubMedCrossRefGoogle Scholar
  33. 33.
    Yu L-Q, Wang L-Y, Su F-H, Hao P-Y, Wang H, Lv Y-K (2018) A gate-opening controlled metal-organic framework for selective solid-phase microextraction of aldehydes from exhaled breath of lung cancer patients. Microchim Acta 185(6):307CrossRefGoogle Scholar
  34. 34.
    Huang K, Zhang Z, Yuan F, Xie C (2013) Fabrication and Hexanal gas sensing property of Nano-SnO2 flat-type coplanar gas sensor arrays at Ppb level. Curr Nanosci 9(3):357–362CrossRefGoogle Scholar
  35. 35.
    Huang K, Zhu C, Yuan F, Xie C (2013) Nanoscale SnO2 flat-type coplanar Hexanal gas sensor arrays at ppb level. J Nanosci Nanotechnol 13(6):4370–4374PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Sajjad Janfaza
    • 1
  • Maryam Banan Nojavani
    • 2
  • Maryam Nikkhah
    • 1
    Email author
  • Taher Alizadeh
    • 3
  • Ali Esfandiar
    • 4
    • 5
  • Mohammad Reza Ganjali
    • 3
  1. 1.Department of Nanobiotechnology, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
  2. 2.Department of Biomaterials, Faculty of Interdisciplinary SciencesTarbiat Modares UniversityTehranIran
  3. 3.Department of Analytical Chemistry, Faculty of Chemistry, University College of ScienceUniversity of TehranTehranIran
  4. 4.Department of PhysicsSharif University of TechnologyTehranIran
  5. 5.Condensed Matter National LaboratoryInstitute for Research in Fundamental SciencesTehranIran

Personalised recommendations