Advertisement

Microchimica Acta

, 186:130 | Cite as

Cysteine capped copper/molybdenum bimetallic nanoclusters for fluorometric determination of methotrexate via the inner filter effect

  • Yowan Nerthigan
  • Amit Kumar Sharma
  • Sunil Pandey
  • Hui-Fen WuEmail author
Original Paper

Abstract

A method is reported for the synthesis of highly luminescent copper/molybdenum bimetallic nanoclusters (Cu/Mo NCs) using cysteine as both a capping and reducing agent. The nanoclusters display bluish-green luminescence (excitation/emission peaks at 370/490 nm) and a relative quantum yield of 26%. The capped Cu/Mo NCs were used as a fluorescent probe for determination of the antineoplastic drug methotrexate (MTX) via an inner filter effect. Fluorescence intensity decreases linearly in the 50 nM to 100 μM MTX concentration range. The limit of detection is 13.7 nM. This approach has been successfully applied to the determination of MTX in spiked human urine with a typical recovery of 99%.

Graphical abstract

Schematic of a fluorometric method for the determination of methotrexate (MTX) which exerts a strong inner filter effect on the fluorescence of cysteine-capped copper/molybdenum nanoclusters (CuMo NCs) at the wavelength of excitation (370 nm).

Keywords

Bimetallic nanoclusters Nanoclusters Inner filter effect Capping Urine analysis 

Notes

Acknowledgements

We express our gratitude to the Ministry of Science and Technology (MOST), Taiwan for the financial assistance with the grant number of MOST 107-2113-M-110-011-MY3.

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3230_MOESM1_ESM.docx (951 kb)
ESM 1 (DOCX 950 kb)

References

  1. 1.
    Howard SC, McCormick J, Pui C-H et al (2016) Preventing and managing toxicities of high-dose methotrexate. Oncologist:1–12.  https://doi.org/10.1634/theoncologist.2015-0164
  2. 2.
    van HL, Heemskerk AAM, Becker ML et al (2010) Expedient methodology for total methotrexate polyglutamation pool determination in human erythrocytes. Anal Methods 2:831.  https://doi.org/10.1039/c0ay00164c CrossRefGoogle Scholar
  3. 3.
    Asbahr D, Figueiredo-Filho LCS, Vicentini FC et al (2013) Differential pulse adsorptive stripping voltammetric determination of nanomolar levels of methotrexate utilizing bismuth film modified electrodes. Sensors Actuators B Chem 188:334–339.  https://doi.org/10.1016/j.snb.2013.07.027 CrossRefGoogle Scholar
  4. 4.
    Widemann BC, Adamson C (2006) Pediatric Oncology Understanding and Managing Methotrexate Nephrotoxicity. 694–703Google Scholar
  5. 5.
    Silva MF, Ribeiro C, Gonçalves VMF et al (2018) Liquid chromatographic methods for the therapeutic drug monitoring of methotrexate as clinical decision support for personalized medicine: a brief review. Biomed Chromatogr 32:e4159.  https://doi.org/10.1002/bmc.4159 CrossRefPubMedGoogle Scholar
  6. 6.
    Roberts MS, Selvo NS, Roberts JK et al (2016) Determination of methotrexate, 7-hydroxymethotrexate, and 2,4-diamino- N 10 -methylpteroic acid by LC–MS/MS in plasma and cerebrospinal fluid and application in a pharmacokinetic analysis of high-dose methotrexate. J Liq Chromatogr Relat Technol 39:745–751.  https://doi.org/10.1080/10826076.2016.1243558 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Ensafi AA, Rezaloo F, Rezaei B (2017) CoFe 2 O 4 /reduced graphene oxide/ionic liquid modified glassy carbon electrode, a selective and sensitive electrochemical sensor for determination of methotrexate. J Taiwan Inst Chem Eng 78:45–50.  https://doi.org/10.1016/j.jtice.2017.05.031 CrossRefGoogle Scholar
  8. 8.
    Yockell-Lelièvre H, Bukar N, Toulouse JL et al (2016) Naked-eye nanobiosensor for therapeutic drug monitoring of methotrexate. Analyst 141:697–703.  https://doi.org/10.1039/C5AN00996K CrossRefPubMedGoogle Scholar
  9. 9.
    Wang W, Lu Y-C, Huang H et al (2015) Facile synthesis of N, S-codoped fluorescent carbon nanodots for fluorescent resonance energy transfer recognition of methotrexate with high sensitivity and selectivity. Biosens Bioelectron 64:517–522.  https://doi.org/10.1016/j.bios.2014.09.066 CrossRefPubMedGoogle Scholar
  10. 10.
    Tao Y, Li M, Ren J, Qu X (2015) Metal nanoclusters: novel probes for diagnostic and therapeutic applications. Chem Soc Rev 44:8636–8663.  https://doi.org/10.1039/C5CS00607D CrossRefPubMedGoogle Scholar
  11. 11.
    Zhao T, Zhou T, Yao Q et al (2015) Metal nanoclusters: applications in environmental monitoring and Cancer therapy. J Environ Sci Heal Part C 33:168–187.  https://doi.org/10.1080/10590501.2015.1030490 CrossRefGoogle Scholar
  12. 12.
    Yuan X, Dou X, Zheng K, Xie J (2015) Recent Advances in the Synthesis and Applications of Ultrasmall Bimetallic Nanoclusters.  https://doi.org/10.1002/ppsc.201400212
  13. 13.
    Zhai Q, Xing H, Zhang X, et al (2017) Enhanced Electrochemiluminescence Behavior of Gold − Silver Bimetallic Nanoclusters and Its Sensing Application for Mercury(II).  https://doi.org/10.1021/acs.analchem.7b01897
  14. 14.
    Chen P-C, Ma J-Y, Chen L-Y et al (2014) Photoluminescent AuCu bimetallic nanoclusters as pH sensors and catalysts. Nanoscale 6:3503.  https://doi.org/10.1039/c3nr06123j CrossRefPubMedGoogle Scholar
  15. 15.
    Feng J, Huang P, Wu F-Y (2017) Gold-platinum bimetallic nanoclusters with enhanced peroxidase-like activity and their integrated agarose hydrogel-based sensing platform for the colorimetric analysis of glucose levels in serum. Analyst:4106–4115.  https://doi.org/10.1039/c7an01343d
  16. 16.
    Dutta D, Chattopadhyay A, Ghosh SS (2016) Cationic BSA templated au-ag bimetallic nanoclusters as a Theranostic gene delivery vector for HeLa Cancer cells. ACS Biomater Sci Eng 2:2090–2098.  https://doi.org/10.1021/acsbiomaterials.6b00517 CrossRefGoogle Scholar
  17. 17.
    Wang Z, Chen B, Rogach AL (2017) Nanoscale Horizons. Nanoscale Horizons 2:135–146.  https://doi.org/10.1039/C7NH00013H CrossRefGoogle Scholar
  18. 18.
    Yang S, Chai J, Chen T et al (2017) Crystal structures of two new gold-copper bimetallic nanoclusters: CuxAu25-x(PPh3)10(PhC2H4S)5Cl22+and Cu3Au34(PPh3)13(tBuPhCH2S)6S23+. Inorg Chem 56:1771–1774.  https://doi.org/10.1021/acs.inorgchem.6b02016 CrossRefPubMedGoogle Scholar
  19. 19.
    Goulas KA, Sreekumar S, Song Y et al (2016) Synergistic effects in bimetallic palladium-copper catalysts improve selectivity in oxygenate coupling reactions. J Am Chem Soc 138:6805–6812.  https://doi.org/10.1021/jacs.6b02247 CrossRefPubMedGoogle Scholar
  20. 20.
    Easow JS, Selvaraju T (2013) Unzipped catalytic activity of copper in realizing bimetallic Ag@Cu nanowires as a better amperometric H2O2 sensor. Electrochim Acta 112:648–654.  https://doi.org/10.1016/j.electacta.2013.09.033 CrossRefGoogle Scholar
  21. 21.
    Dong S, Yang Q, Peng L et al (2016) Dendritic Ag@Cu bimetallic interface for enhanced electrochemical responses on glucose and hydrogen peroxide. Sensors Actuators B Chem 232:375–382.  https://doi.org/10.1016/j.snb.2016.03.129 CrossRefGoogle Scholar
  22. 22.
    Li X, Zhu H (2015) Two-dimensional MoS2: properties, preparation, and applications. J Mater 1:33–44.  https://doi.org/10.1016/j.jmat.2015.03.003 CrossRefGoogle Scholar
  23. 23.
    Chang K, Chen W (2011) L -cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 5:4720–4728.  https://doi.org/10.1021/nn200659w CrossRefPubMedGoogle Scholar
  24. 24.
    Kumar R, Goel N, Kumar M (2017) UV-activated MoS2 based fast and reversible NO2 sensor at room temperature. ACS Sensors acssensors.7b00731. doi:  https://doi.org/10.1021/acssensors.7b00731
  25. 25.
    Pandey S, Sharma AK, Sharma KH et al (2017) Rapid naked eye detection of alkaline phosphatase using α-MoO 3-x nano-flakes. Sensors Actuators B Chem.  https://doi.org/10.1016/j.snb.2017.06.123
  26. 26.
    Nerthigan Y, Sharma AK, Pandey S et al (2018) Glucose oxidase assisted visual detection of glucose using oxygen deficient α-MoO3-x nanoflakes. Microchim Acta 185:65.  https://doi.org/10.1007/s00604-017-2612-6 CrossRefGoogle Scholar
  27. 27.
    Leung KH, He HZ, Wang W et al (2013) Label-free luminescent switch-on detection of endonuclease IV activity using a G-quadruplex-selective iridium(III) complex. ACS Appl Mater Interfaces.  https://doi.org/10.1021/am404314p
  28. 28.
    Wang M, Wang W, Kang TS et al (2016) Development of an iridium(III) complex as a G-Quadruplex probe and its application for the G-Quadruplex-based luminescent detection of Picomolar insulin. Anal Chem.  https://doi.org/10.1021/acs.analchem.5b04064
  29. 29.
    Hori Y, Otomura N, Nishida A et al (2018) Synthetic-molecule/protein hybrid probe with Fluorogenic switch for live-cell imaging of DNA methylation. J Am Chem Soc.  https://doi.org/10.1021/jacs.7b09713
  30. 30.
    Wang H, Feng Z, Del Signore SJ et al (2018) Active probes for imaging membrane dynamics of live cells with high spatial and temporal resolution over extended time scales and areas. J Am Chem Soc.  https://doi.org/10.1021/jacs.7b13307
  31. 31.
    Yu X, Hu L, Zhang F et al (2018) MoS2quantum dots modified with a labeled molecular beacon as a ratiometric fluorescent gene probe for FRET based detection and imaging of microRNA. Microchim Acta.  https://doi.org/10.1007/s00604-018-2773-y
  32. 32.
    Hu L, Zhang Q, Gan X et al (2018) Fluorometric turn-on determination of the activity of alkaline phosphatase by using WS2 quantum dots and enzymatic cleavage of ascorbic acid 2-phosphate. Microchim Acta 185:390.  https://doi.org/10.1007/s00604-018-2929-9 CrossRefGoogle Scholar
  33. 33.
    Liu R, Wu Z, Yang Y et al (2018) Application of gold-silver nanocluster based fluorescent sensors for determination of acetylcholinesterase activity and its inhibitor. Mater Res Express 5:0–10.  https://doi.org/10.1088/2053-1591/aac867 CrossRefGoogle Scholar
  34. 34.
    Nie F, Ga L, Ai J, Wang Y (2018) Synthesis of highly fluorescent cu/au bimetallic nanoclusters and their application in a temperature sensor and fluorescent probe for chromium(iii) ions. RSC Adv 8:13708–13713.  https://doi.org/10.1039/c8ra02118j CrossRefGoogle Scholar
  35. 35.
    Pang S, Liu S (2017) Lysozyme-stabilized bimetallic gold/silver nanoclusters as a turn-on fluorescent probe for determination of ascorbic acid and acid phosphatase. Anal Methods 9:6713–6718.  https://doi.org/10.1039/c7ay02372c CrossRefGoogle Scholar
  36. 36.
    Zhou TY, Lin LP, Rong MC, et al (2013) Silver-gold alloy nanoclusters as a fluorescence-enhanced probe for aluminum ion sensing. Anal Chem 85:9839–9844. https://doi.org/10.1021/ac4023764Google Scholar
  37. 37.
    Zhou Q, Lin Y, Xu M, et al (2016) Facile Synthesis of Enhanced Fluorescent Gold − Silver Bimetallic Nanocluster and Its Application for Highly Sensitive Detection of Inorganic Pyrophosphatase Activity.  https://doi.org/10.1021/acs.analchem.6b02543
  38. 38.
    Huang H, Li H, Feng J, Wang A (2016) Sensors and Actuators B : Chemical One-step green synthesis of fluorescent bimetallic Au / Ag nanoclusters for temperature sensing and in vitro detection of Fe 3 +. 223:550–556Google Scholar
  39. 39.
    Ao H, Qian Z, Zhu Y, et al (2016) A fluorometric biosensor based on functional Au/Ag nanoclusters for real-time monitoring of tyrosinase activity. Biosens Bioelectron 86:542–547.  https://doi.org/10.1016/j.bios.2016.07.051
  40. 40.
    Lin M, Zou HY, Yang T, et al (2016) An inner filter effect based sensor of tetracycline hydrochloride as developed by loading photoluminescent carbon nanodots in the electrospun nanofibers. Nanoscale 8:2999–3007.  https://doi.org/10.1039/C5NR08177G
  41. 41.
    Gabor G, Walt DR (1991) Sensitivity enhancement of fluorescent pH indicators by inner filter effects. Anal Chem 63:793–796.  https://doi.org/10.1021/ac00008a011
  42. 42.
    Zhang QQ, Chen B Bin, Zou HY, et al (2018) Inner filter with carbon quantum dots: A selective sensing platform for detection of hematin in human red cells. Biosens Bioelectron 100:148–154.  https://doi.org/10.1016/j.bios.2017.08.049
  43. 43.
    Sivasankaran U, Cyriac ST, Menon S, Kumar KG (2017) Fluorescence Turn off Sensor for Brilliant Blue FCF- an Approach Based on Inner Filter Effect. J Fluoresc 27:69–77.  https://doi.org/10.1007/s10895-016-1935-8
  44. 44.
    Liu H, Li M, Xia Y, Ren X (2017) A Turn-On Fluorescent Sensor for Selective and Sensitive Detection of Alkaline Phosphatase Activity with Gold Nanoclusters Based on Inner Filter Effect. ACS Appl Mater Interfaces 9:120–126.  https://doi.org/10.1021/acsami.6b11920
  45. 45.
    Tanwar AS, Hussain S, Malik AH, et al (2016) Inner Filter Effect Based Selective Detection of Nitroexplosive-Picric Acid in Aqueous Solution and Solid Support Using Conjugated Polymer. ACS Sensors 1:1070–1077.  https://doi.org/10.1021/acssensors.6b00441
  46. 46.
    Werner T, Klimant I, Wolfbeis OS (1994) Optical sensor for ammonia based on the inner filter effect of fluorescence. J Fluoresc 4:41–44.  https://doi.org/10.1007/BF01876651
  47. 47.
    Sharma AK, Pandey S, Khan MS, Wu H-F (2018) Protein stabilized fluorescent gold nanocubes as selective probe for alkaline phosphatase via inner filter effect. Sensors Actuators B Chem 259:83–89.  https://doi.org/10.1016/j.snb.2017.11.190
  48. 48.
    Ciekot J, Goszczyński T, Boratyński J (2012) Methods for methotrexate determination in macromolecular conjugates drug carrier. Acta Pol Pharm - Drug Res 69:1342–1346Google Scholar
  49. 49.
    Yan N, Liao L, Yuan J, et al (2016) Bimetal Doping in Nanoclusters : Synergistic or Counteractive?  https://doi.org/10.1021/acs.chemmater.6b03132
  50. 50.
    Wan X-K, Cheng X-L, Tang Q, et al (2017) Atomically Precise Bimetallic Au 19 Cu 30 Nanocluster with an Icosidodecahedral Cu 30 Shell and an Alkynyl–Cu Interface. J Am Chem Soc 139:9451–9454.  https://doi.org/10.1021/jacs.7b04622
  51. 51.
    Tian L, Li Y, Ren T, et al (2017) Novel bimetallic gold−silver nanoclusters with “Synergy”-enhanced fluorescence for cyanide sensing, cell imaging and temperature sensing. Talanta 170:530–539.  https://doi.org/10.1016/j.talanta.2017.03.107
  52. 52.
    Negishi Y, Munakata K, Ohgake W, Nobusada K (2012) Effect of copper doping on electronic structure, geometric structure, and stability of thiolate-protected Au 25 nanoclusters. J Phys Chem Lett 3:2209–2214.  https://doi.org/10.1021/jz300892w
  53. 53.
    Brouwer AM (2011) Standards for photoluminescence quantum yield measurements in solution (IUPAC Technical Report). Pure Appl Chem.  https://doi.org/10.1351/PAC-REP-10-09-31
  54. 54.
    Chen Z, Qian S, Chen X, et al (2012) Protein-templated gold nanoclusters as fluorescence probes for the detection of methotrexate. Analyst 137:4356.  https://doi.org/10.1039/c2an35786k
  55. 55.
    Jouyban A, Shaghaghi M, Manzoori JL, et al (2011) Determination of methotrexate in biological fluids and a parenteral injection using terbium-sensitized method. Iran J Pharm Res 10:695–704Google Scholar
  56. 56.
    Barbieri A, Sabatini L, Indiveri P, et al (2006) Simultaneous determination of low levels of methotrexate and cyclophosphamide in human urine by micro liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 20:1889–1893.  https://doi.org/10.1002/rcm.2527
  57. 57.
    Merás ID, Mansilla AE, Gómez MJR (2005) Determination of methotrexate , several pteridines , and creatinine in human urine , previous oxidation with potassium permanganate , using HPLC with photometric and X uorimetric serial detection. 346:201–209.  https://doi.org/10.1016/j.ab.2005.07.038

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Yowan Nerthigan
    • 1
  • Amit Kumar Sharma
    • 1
  • Sunil Pandey
    • 1
  • Hui-Fen Wu
    • 1
    • 2
    • 3
    • 4
    Email author
  1. 1.Department of ChemistryNational Sun Yat-Sen UniversityKaohsiungTaiwan
  2. 2.School of Pharmacy, College of PharmacyKaohsiung Medical UniversityKaohsiungTaiwan
  3. 3.Doctoral Degree Program in Marine BiotechnologyNational Sun Yat-Sen University and Academia SinicaKaohsiungTaiwan
  4. 4.Institute of Medical Science and TechnologyNational Sun Yat-Sen UniversityKaohsiungTaiwan

Personalised recommendations