Advertisement

Microchimica Acta

, 186:127 | Cite as

Carbon-dot wrapped ZnO nanoparticle-based photoelectrochemical sensor for selective monitoring of H2O2 released from cancer cells

  • Faria Khan
  • Naeem AkhtarEmail author
  • Nasir Jalal
  • Irshad Hussain
  • Rafal Szmigielski
  • Muhammad Qasim Hayat
  • Hafiz B. Ahmad
  • Waleed A. El-Said
  • Minghui YangEmail author
  • Hussnain Ahmed JanjuaEmail author
Original Paper
  • 175 Downloads

Abstract

This study reports on a simple approach for the fabrication of an electrode modified with biocompatible C-dot wrapped ZnO nanoparticles for selective photoelectrochemical monitoring of H2O2 released from living cells. The biocompatibility of the ZnO nanoparticles was confirmed through in-vitro cellular testing using the MTT assay on Huh7 cell lines. The ZnO nanoparticles wrapped with dopamine-derived C-dots possess numerous catalytically active sites, excessive surface defects, good electrical conductivity, and efficient separation ability of photo-induced electrons and holes. These properties offer highly sensitive and selective non-enzymatic photo-electrochemical monitoring of H2O2 released from HeLa cells after stimulation with N-formylmethionyl-leucyl-phenylalanine. The sensor has a wide linear range (20–800 nM), low detection limit (2.4 nM), and reliable reproducibility, this implying its suitability for biological and biomedical applications.

Graphical abstract

Schematic of the fabrication of ZnO nanoparticles by using a plant extract as a reducing agent. Wrapping of ZnO with C-dots enhances the photoelectrocatalytic efficacy. Sensitive and selective photoelectrochemical monitoring of H2O2 released from cancer cells is demonstrated.

Keywords

H2O2 Reactive oxygen species Photo-electrochemical Biocompatibility Surface defects Bio-nanomaterials 

Notes

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3227_MOESM1_ESM.doc (966 kb)
ESM 1 (DOC 965 kb)

References

  1. 1.
    López ML, Uribe-Cruz C, Osvaldt A, Kieling CO, Simon L, Tobar S, Andrades M, Matte U (2016) Encapsulated platelets modulate kupffer cell activation and reduce oxidative stress in a model of acute liver failure. Liver Transpl 22(11):1562–1572CrossRefGoogle Scholar
  2. 2.
    Córdova A, Sureda A, Albina ML, Linares V, Bellés M, Sánchez DJ (2015) Oxidative stress markers after a race in professional cyclists. Int J Sport Nutr Exerc Metab 25(2):171–178CrossRefGoogle Scholar
  3. 3.
    Grisham MB (2013) Methods to detect hydrogen peroxide in living cells: possibilities and pitfalls. Comp Biochem Physiol A Mol Integr Physiol 165(4):429–438CrossRefGoogle Scholar
  4. 4.
    Nogueira RFP, Oliveira MC, Paterlini WC (2005) Simple and fast spectrophotometric determination of H2O2 in photo-Fenton reactions using metavanadate. Talanta 66(1):86–91CrossRefGoogle Scholar
  5. 5.
    Reichert J, McNeight S, Rudel H (1939) Determination of hydrogen peroxide and some related peroxygen compounds. Ind Eng Chem Anal Ed 11(4):194–197CrossRefGoogle Scholar
  6. 6.
    Gomes A, Fernandes E, Lima JL (2005) Fluorescence probes used for detection of reactive oxygen species. J Biochem Biophys Methods 65(2–3):45–80CrossRefGoogle Scholar
  7. 7.
    Lyu Y-P, Wu Y-S, Wang T-P, Lee C-L, Chung M-Y, Lo C-T (2018) Hydrothermal and plasma nitrided electrospun carbon nanofibers for amperometric sensing of hydrogen peroxide. Microchim Acta 185(8):371CrossRefGoogle Scholar
  8. 8.
    Zhao S, Zhang J, Li Z, Zhang P, Li Y, Liu G, Wang Y, Yue Z (2017) Photoelectrochemical determination of hydrogen peroxide using a gold electrode modified with fluorescent gold nanoclusters and graphene oxide. Microchim Acta 184(3):677–686CrossRefGoogle Scholar
  9. 9.
    Su Y, Zhou X, Long Y, Li W (2018) Immobilization of horseradish peroxidase on amino-functionalized carbon dots for the sensitive detection of hydrogen peroxide. Microchim Acta 185(2):114CrossRefGoogle Scholar
  10. 10.
    Liu J, Yang C, Shang Y, Zhang P, Liu J, Zheng J (2018) Preparation of a nanocomposite material consisting of cuprous oxide, polyaniline and reduced graphene oxide, and its application to the electrochemical determination of hydrogen peroxide. Microchim Acta 185(3):172CrossRefGoogle Scholar
  11. 11.
    Zhang Y, Huang B, Yu F, Yuan Q, Gu M, Ji J, Zhang Y, Li Y (2018) 3D nitrogen-doped graphite foam@ Prussian blue: an electrochemical sensing platform for highly sensitive determination of H2O2 and glucose. Microchim Acta 185(2):86CrossRefGoogle Scholar
  12. 12.
    Akhtar N, El-Safty SA, Khairy M, El-Said WA (2015) Fabrication of a highly selective nonenzymatic amperometric sensor for hydrogen peroxide based on nickel foam/cytochrome c modified electrode. Sensors Actuators B Chem 207:158–166CrossRefGoogle Scholar
  13. 13.
    Li H, Hao W, Hu J, Wu H (2013) A photoelectrochemical sensor based on nickel hydroxyl-oxide modified n-silicon electrode for hydrogen peroxide detection in an alkaline solution. Biosens Bioelectron 47:225–230CrossRefGoogle Scholar
  14. 14.
    Amanulla B, Palanisamy S, Chen S-M, Velusamy V, Chiu T-W, Chen T-W, Ramaraj SK (2017) A non-enzymatic amperometric hydrogen peroxide sensor based on iron nanoparticles decorated reduced graphene oxide nanocomposite. J Colloid Interface Sci 487:370–377CrossRefGoogle Scholar
  15. 15.
    Hussain I, Singh N, Singh A, Singh H, Singh S (2016) Green synthesis of nanoparticles and its potential application. Biotechnol Lett 38(4):545–560CrossRefGoogle Scholar
  16. 16.
    Liu R, Mahurin SM, Li C, Unocic RR, Idrobo JC, Gao H, Pennycook SJ, Dai S (2011) Dopamine as a carbon source: the controlled synthesis of hollow carbon spheres and yolk-structured carbon nanocomposites. Angew Chem 50(30):6799–6802CrossRefGoogle Scholar
  17. 17.
    Khan F, Hashmi MU, Khalid N, Hayat MQ, Ikram A, Janjua HA (2016) Controlled assembly of silver nano-fluid in Heliotropium crispum extract: a potent anti-biofilm and bactericidal formulation. Appl Surf Sci 387:317–331CrossRefGoogle Scholar
  18. 18.
    Akhtar N, El-Safty SA, Abdelsalam ME, Kawarada H (2015) One-pot fabrication of dendritic NiO@ carbon–nitrogen dot electrodes for screening blood glucose level in diabetes. Adv Healthc Mater 4(14):2110–2119CrossRefGoogle Scholar
  19. 19.
    Sundrarajan M, Ambika S, Bharathi K (2015) Plant-extract mediated synthesis of ZnO nanoparticles using Pongamia pinnata and their activity against pathogenic bacteria. Adv Powder Technol 26(5):1294–1299CrossRefGoogle Scholar
  20. 20.
    Fu L, Fu Z (2015) Plectranthus amboinicus leaf extract–assisted biosynthesis of ZnO nanoparticles and their photocatalytic activity. Ceram Int 41(2):2492–2496CrossRefGoogle Scholar
  21. 21.
    Barman MK, Mitra P, Bera R, Das S, Pramanik A, Parta A (2017) An efficient charge separation and photocurrent generation in the carbon dot–zinc oxide nanoparticle composite. Nanoscale 9(20):6791–6799CrossRefGoogle Scholar
  22. 22.
    Bauermann LP, Bill J, Aldinger F (2006) Bio-friendly synthesis of ZnO nanoparticles in aqueous solution at near-neutral pH and low temperature. J Phys Chem B 110(11):5182–5185CrossRefGoogle Scholar
  23. 23.
    Warkocki W, El-Safty SA, Shenashen MA, Elshehy E, Yamaguchi H, Akhtar N (2015) Photo-induced recovery, optical detection, and separation of noxious SeO 3 2− using a mesoporous nanotube hybrid membrane. J Mater Chem A 3(34):17578–17589CrossRefGoogle Scholar
  24. 24.
    Chi P-W, Su C-W, Wei D-H (2017) Internal stress induced natural self-chemisorption of ZnO nanostructured films. Sci Rep 7:43281CrossRefGoogle Scholar
  25. 25.
    Wang C, Hu X, Gao Y, Ji Y (2015) ZnO nanoparticles treatment induces apoptosis by increasing intracellular ROS levels in LTEP-a-2 cells. Biomed Res Int 2015Google Scholar
  26. 26.
    Akhtar MJ, Alhadlaq HA, Alshamsan A, Khan MM, Ahamed M (2015) Aluminum doping tunes band gap energy level as well as oxidative stress-mediated cytotoxicity of ZnO nanoparticles in MCF-7 cells. Sci Rep 5:13876CrossRefGoogle Scholar
  27. 27.
    Yin H, Casey PS, McCall MJ, Fenech M (2010) Effects of surface chemistry on cytotoxicity, genotoxicity, and the generation of reactive oxygen species induced by ZnO nanoparticles. Langmuir 26(19):15399–15408CrossRefGoogle Scholar
  28. 28.
    Batra N, Tomar M, Gupta V (2012) Realization of an efficient cholesterol biosensor using ZnO nanostructured thin film. Analyst 137(24):5854–5859CrossRefGoogle Scholar
  29. 29.
    Kim W, Son Y, Pawar A, Kang M, Zheng J, Sharma V, Mohanty P, Kang Y (2015) Facile fabrication and photoelectrochemical properties of a one axis-oriented NiO thin film with a (111) dominant facet. J Mater Chem A 3:447–447CrossRefGoogle Scholar
  30. 30.
    Yue Z, Lisdat F, Parak WJ, Hickey SG, Tu L, Sabir N, Dorfs D, Bigall NC (2013) Quantum-dot-based photoelectrochemical sensors for chemical and biological detection. ACS Appl Mater Interfaces 5(8):2800–2814CrossRefGoogle Scholar
  31. 31.
    Zhang J, Tu L, Zhao S, Liu G, Wang Y, Wang Y, Yue Z (2015) Fluorescent gold nanoclusters based photoelectrochemical sensors for detection of H2O2 and glucose. Biosens Bioelectron 67:296–302CrossRefGoogle Scholar
  32. 32.
    Zhang R, Jiang C, Fan X, Yang R, Sun Y, Zhang C (2018) A gold electrode modified with a nanoparticulate film composed of a conducting copolymer for ultrasensitive voltammetric sensing of hydrogen peroxide. Microchim Acta 185(1):58CrossRefGoogle Scholar
  33. 33.
    Li Z, Xin Y, Zhang Z (2015) New photocathodic analysis platform with quasi-core/shell-structured TiO2@Cu2O for sensitive detection of H2O2 release from living cells. Anal Chem 87(20):10491–10497CrossRefGoogle Scholar
  34. 34.
    Li Z, Xin Y, Wu W, Fu B, Zhang Z (2016) Topotactic conversion of copper (I) phosphide nanowires for sensitive electrochemical detection of H2O2 release from living cells. Anal Chem 88(15):7724–7729CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Faria Khan
    • 1
    • 2
    • 3
  • Naeem Akhtar
    • 4
    • 5
    Email author
  • Nasir Jalal
    • 6
  • Irshad Hussain
    • 7
  • Rafal Szmigielski
    • 3
  • Muhammad Qasim Hayat
    • 7
  • Hafiz B. Ahmad
    • 4
  • Waleed A. El-Said
    • 8
  • Minghui Yang
    • 9
    Email author
  • Hussnain Ahmed Janjua
    • 1
    Email author
  1. 1.Department of Industrial Biotechnology, Atta ur Rahman School of Applied BiosciencesNational University of Science Technology (NUST)IslamabadPakistan
  2. 2.Department of Plant Biotechnology, Atta ur Rahman School of Applied BiosciencesNational University of Science Technology (NUST)IslamabadPakistan
  3. 3.Institute of Physical ChemistryPolish Academy of SciencesWarsawPoland
  4. 4.Interdisciplinary Research Center in Biomedical Materials (IRCBM)COMSATS University IslamabadLahorePakistan
  5. 5.National Institute for Materials Science (NIMS)Tsukuba-shiJapan
  6. 6.School of Pharmaceutical Science and TechnologyTianjin UniversityTianjin ShiChina
  7. 7.Department of Chemistry, SBA School of Science & Engineering (SBASSE)Lahore University of Management Sciences (LUMS)LahorePakistan
  8. 8.Department of Chemistry, Faculty of ScienceAssiut UniversityAssiutEgypt
  9. 9.Solid State Functional Materials Research Laboratory, Ningbo Institute of Materials Technology and Engineering (NIMTE)Chinese Academy of Sciences (CAS)NingboChina

Personalised recommendations