Microchimica Acta

, 186:124 | Cite as

Colorimetric and fluorometric dual-channel detection of α-fetoprotein based on the use of ZnS-CdTe hierarchical porous nanospheres

  • Dong ZhuEmail author
  • Yue Hu
  • Xiao-Jing Zhang
  • Xiao-Tong Yang
  • Ying-Ying Tang
Original Paper


An immunoassay is described for either colorimetric and fluorometric determination of the cancer biomarker α-fetoprotein (AFP). It is making use of ZnS nanospheres modified with CdTe quantum dots (QDs). These display strong fluorescence due to the enrichment of the QDs onto the porous ZnS nanospheres. In this assay, the release of millions of zinc(II) ions can be triggered to form a purple complex (with an absorption maximum at 571 nm) on addition of the reagent 2-(5-nitro-2-pyridylazo)-5-(N-propyl-N-sulfopropylamino) phenol. This results in a sensitive colorimetric immunoassay which can also be used as a visual test. It represents an enzyme-free alternative to the commonly used ELISAs. It also can be evaluated by fluorometry (with excitation/emission maxima at 400/645 nm). The detection limits are 10 pg·mL−1 for fluorometry and 7 pg·mL−1 for colorimetry. This sensitivity is better by one order of magnitude than that of the commercial ELISA. The dual detection feature provides good complementarity and reduces the risk of false-positive or false-negative results.

Graphical abstract

Schematic presentation of colorimetric and fluorescent dual-channel detection for α-fetoprotein. ZnS-CdTe hierarchical porous nanospheres are used as labels for signal amplification.


Optical biosensor Enzyme-free bioassay Zinc-based amplification Dual functional detection Biomarker Immunoassay Fluorescent nanomaterials Chromogenic complex Nitro-PAPS Sandwich assay 



We sincerely appreciate the National Natural Science Foundation of China for the financial support (81573388). This work was supported by “Qing Lan Project of Jiangsu province” and “Six talent peaks project of Jiangsu Province (YY-032)”. This work was also supported by the Open Project Program of Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica (No. JKLPSE201805) and the Project of the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2018_3225_MOESM1_ESM.docx (3.1 mb)
ESM 1 (DOCX 3269 kb)


  1. 1.
    Patton JC, Coovadia AH, Meyers TM, Sherman GG (2008) Evaluation of the ultrasensitive human immunodeficiency virus type 1 (HIV-1) p24 antigen assay performed on dried blood spots for diagnosis of HIV-1 infection in infants. Clin Vaccine Immunol 15:388–391CrossRefGoogle Scholar
  2. 2.
    Zhao LJ, Yu RJ, Ma W, Han HX, Tian H, Qian RC, Long YT (2017) Sensitive detection of protein biomarkers using silver nanoparticles enhanced immunofluorescence assay. Theranostics 7:876–883CrossRefGoogle Scholar
  3. 3.
    Zhu GB, Lee HJ (2017) Electrochemical sandwich-type biosensors for α-1 antitrypsin with carbon nanotubes and alkaline phosphatase labeled antibody-silver nanoparticles. Biosens Bioelectron 89:959–963CrossRefGoogle Scholar
  4. 4.
    Cui C, Chen Y, Jiang DC, Zhu JJ, Chen HY (2017) Attomole antigen detection using self-Electrochemiluminous graphene oxide-capped au@L012 nanocomposite. Anal Chem 89:2418–2423CrossRefGoogle Scholar
  5. 5.
    Xu SX, Li XM, Li CB, Li JL, Zhang XF, Peng W, Hou XD (2016) In situ generation and consumption of H2O2 by Bienzyme-quantum dots bioconjugates for improved Chemiluminescence resonance energy transfer. Anal Chem 88:6418–6424CrossRefGoogle Scholar
  6. 6.
    Cao J, Wang W, Bo B, Mao X, Wang K, Zhu X (2017) A dual-signal strategy for the solid detection of both small molecules and proteins based on magnetic separation and highly fluorescent copper nanoclusters. Biosens Bioelectron 90:534–541CrossRefGoogle Scholar
  7. 7.
    Lin H, Liu Y, Huo J, Zhang A, Pan Y, Bai H, Jiao Z, Fang T, Wang X, Cai Y, Wang Q, Zhang Y, Qian X (2013) Modified enzyme-linked immunosorbent assay strategy using graphene oxide sheets and gold nanoparticles functionalized with different antibody types. Anal Chem 85:6228–6232CrossRefGoogle Scholar
  8. 8.
    He J, Liu Y, Babu T, Wei Z, Nie Z (2012) Self-assembly of inorganic nanoparticle vesicles and tubules driven by tethered linear block copolymers. J Am Chem Soc 134:11342–11345CrossRefGoogle Scholar
  9. 9.
    De IR, Stevens MM (2012) Plasmonic ELISA for the ultrasensitive detection of disease biomarkers with the naked eye. Nat Nanotechnol 7:821–824CrossRefGoogle Scholar
  10. 10.
    Zou ZX, Du D, Wang J, Smith JN, Timchalk C, Li YQ, Lin YH (2010) Quantum dot-based immunochromatographic fluorescent biosensor for biomonitoring trichloropyridinol, a biomarker of exposure to chlorpyrifos. Anal Chem 82:5125–5133CrossRefGoogle Scholar
  11. 11.
    Liu DB, Wang ZT, Jin A, Huang XL, Sun XL, Wang F, Yan Q, Ge SX, Xia NS, Niu G, Liu G, Hight Walker AR, Chen XY (2013) Acetylcholinesterase-catalyzed hydrolysis allows ultrasensitive detection of pathogens with the naked eye. Angew Chem Int Ed 52:14065–14069CrossRefGoogle Scholar
  12. 12.
    Qu W, Liu Y, Liu D, Wang Z, Jiang X (2011) Copper-mediated amplification allows readout of immunoassays by the naked eye. Angew Chem Int Ed 50:3442–3445CrossRefGoogle Scholar
  13. 13.
    Ye HH, Yang KK, Tao J, Liu YJ, Zhang Q, Habibi S, Nie ZH, Xia XH (2017) An enzyme-free signal amplification technique for ultrasensitive colorimetric assay of disease biomarkers. ACS Nano 11:2052–2059CrossRefGoogle Scholar
  14. 14.
    Li JX, Gao ZQ, Ye HH, Wan SL, Pierce MH, Tang DP, Xia XH (2017) A non-enzyme cascade amplification strategy for colorimetric assay of disease biomarkers. Chem Commun 53:9055–9058CrossRefGoogle Scholar
  15. 15.
    Dong H, Yan F, Ji H, Wong DK, Ju HX (2010) Quantum-dot-functionalized poly(styrene-co-acrylic acid) microbeads: step-wise self-assembly, characterization, and applications for sub-femtomolar electrochemical detection of DNA hybridization. Adv Funct Mater 20:1173–1179CrossRefGoogle Scholar
  16. 16.
    Xiang Y, Zhang HX, Jiang BY, Chai YR, Yuan R (2011) Quantum dot layer-by-layer assemblies as signal amplification labels for ultrasensitive electronic detection of uropathogens. Anal Chem 83:4302–4306CrossRefGoogle Scholar
  17. 17.
    Zhang LN, Deng HH, Lin FL, Xu XW, Weng SH, Liu AL, Lin XH, Xia XH, Chen W (2014) In situ growth of porous platinum nanoparticles on graphene oxide for colorimetric detection of cancer cells. Anal Chem 86(5):2711–2718CrossRefGoogle Scholar
  18. 18.
    Qian J, Dai HC, Pan XH, Liu SQ (2011) Simultaneous detection of dual proteins using quantum dots coated silica nanoparticles as labels. Biosens Bioelectron 28:314–319CrossRefGoogle Scholar
  19. 19.
    Li J, Zhao XW, Zhao YJ, Gu ZZ (2009) Quantum-dot-coated encoded silica colloidal crystals beads for multiplex coding. Chem Commun (17):2329–2331Google Scholar
  20. 20.
    Tan L, Chen K, Huang C, Peng R, Luo X, Yang R, Cheng Y, Tang Y (2015) A fluorescent turn-on detection scheme for α-fetoprotein using quantum dots placed in a boronate-modified molecularly imprinted polymer with high affinity for glycoproteins. Microchim Acta 182:2615–2622CrossRefGoogle Scholar
  21. 21.
    Hierlemann A, Gutierrez-Osuna R (2008) Higher-order chemical sensing. Chem Rev 108:563–613CrossRefGoogle Scholar
  22. 22.
    Wu P, Miao LN, Wang HF, Shao XG, Yan XP (2011) A multidimensional sensing device for the discrimination of proteins based on manganese-doped ZnS quantum dots. Angew Chem Int Ed 50:8118–8121CrossRefGoogle Scholar
  23. 23.
    Gutierrez-Osuna R, Hierlemann A (2010) Adaptive microsensor systems. Annu Rev Anal Chem 3:255–276CrossRefGoogle Scholar
  24. 24.
    Jin C, Kurzawski P, Hierlemann A, Zellers ET (2008) Evaluation of multitransducer arrays for the determination of organic vapor mixtures. Anal Chem 80:227–236CrossRefGoogle Scholar
  25. 25.
    Kim KK, Hong S, Cho HM, Lee J, Suh YD, Ham J, Ko SH (2015) Highly sensitive and stretchable multidimensional strain sensor with Prestrained anisotropic metal nanowire percolation networks. Nano letter 15:5240–5247CrossRefGoogle Scholar
  26. 26.
    Krishnan S, Mani V, Wasalathanthri DP, Kumar CV, Rusling JF (2011) Attomolar detection of a Cancer biomarker protein in serum by surface Plasmon resonance using superparamagnetic particle labels. Angew Chem 123:1207–1210CrossRefGoogle Scholar
  27. 27.
    Chan WCW, Nie SM (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018CrossRefGoogle Scholar
  28. 28.
    Makino T, Kiyonaga M, Kina K (1988) A sensitive, direct colorimetric assay of serum iron using the chromogen, nitro-PAPS. Clin Chim Acta 171:19–28CrossRefGoogle Scholar
  29. 29.
    Karfa P, Roy E, Patra S, Kumar D, Madhuri R, Sharma PK (2016) A fluorescent molecularly-imprinted polymer gate with temperature and pH as inputs for detection of alpha-fetoprotein. Biosens Bioelectron 78:454–463CrossRefGoogle Scholar
  30. 30.
    Xie QF, Weng XH, Lu LJ, Lin ZY, Xu XW, Fu CL (2016) A sensitive fluorescent sensor for quantification of alpha-fetoprotein based on immunosorbent assay and click chemistry. Biosens Bioelectron 77:46–50CrossRefGoogle Scholar
  31. 31.
    Morales-Narvaez E, Monton H, Fomicheva A, Merkoci A (2012) Signal enhancement in antibody microarrays using quantum dots nanocrystals: application to potential Alzheimer's disease biomarker screening. Anal Chem 84:6821–6827CrossRefGoogle Scholar
  32. 32.
    Chen J, He QH, Xu Y, Fu JH, Li YP, Tu Z, Wang D, Shu M, Qiu YL, Yang HW, Liu YY (2016) Nanobody medicated immunoassay for ultrasensitive detection of cancer biomarker alpha-fetoprotein. Talanta 147:523–530CrossRefGoogle Scholar
  33. 33.
    Liu ZR, Yang B, Chen BB, He M, Hu B (2016) Upconversion nanoparticle as elemental tag for the determination of alpha-fetoprotein in human serum by inductively coupled plasma mass spectrometry. Analyst 142:197–205CrossRefGoogle Scholar
  34. 34.
    Maiolini E, Ferri E, Pitasi AL, Montoya A, Giovanni MD, Erranic E, Girotti S (2014) Bisphenol a determination in baby bottles by chemiluminescence enzyme-linked immunosorbent assay, lateral flow immunoassay and liquid chromatography tandem mass spectrometry. Analyst 139:318–324CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Dong Zhu
    • 1
    • 2
    Email author
  • Yue Hu
    • 1
  • Xiao-Jing Zhang
    • 1
  • Xiao-Tong Yang
    • 1
  • Ying-Ying Tang
    • 1
  1. 1.Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of PharmacyNanjing University of Chinese MedicineNanjingPeople’s Republic of China
  2. 2.Jiangsu Key Laboratory for Functional Substance of Chinese MedicineNanjingChina

Personalised recommendations