Advertisement

Microchimica Acta

, 186:121 | Cite as

Gold nanoparticle-loaded hollow Prussian Blue nanoparticles with peroxidase-like activity for colorimetric determination of L-lactic acid

  • Dandan Zhou
  • Ke Zeng
  • Minghui YangEmail author
Original Paper
  • 66 Downloads

Abstract

The intrinsic peroxidase-like activity of hollow Prussian Blue nanoparticle-loaded with gold nanoparticles (Au@HMPB NPs) were applied to oxidize the substrate 3,3′,5,5′-tetramethylbenzidine (TMB) in the presence of H2O2 to give a blue-green coloration. The morphology of the Au@HMPB NPs and its peroxidase-mimicking activity was characterized in detail. The catalytic activity follows Michaelis-Menten kinetics and is higher than that of HMPB NPs not loaded with gold nanoparticles. The NPs were employed to detect L-lactic acid colorimetrically (at 450 nm) via detection of H2O2 that is generated during enzymatic oxidation by L-lactate oxidase (LOx). The limit of detection is 4.2 μM. The assay was successfully applied to the quantitation of L-lactic acid in spiker human serum samples.

Graphical abstract

Gold nanoparticle-loaded hollow Prussian Blue nanoparticles (Au@HMPB NPs) with peroxidase-like catalytic activity can oxidize the substrate 3,3′,5,5′-tetramethylbenzidine (TMB) in the presence of H2O2. The nanoparticles were applied for the detection of L-lactic acid through detection of H2O2 that is generated by L-lactate oxidase (LOx) catalyzed oxidation of L-lactic acid.

Keywords

Tetramethylbenzidine Human serum sample Lactate oxidase Gold nanoparticles 

Notes

Acknowledgments

The authors thank the support of this work by the National Natural Science Foundation of China (No. 21575165).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2018_3214_MOESM1_ESM.docx (152 kb)
ESM 1 (DOCX 151 kb)

References

  1. 1.
    Stacpoole PW, Wright EC, Baumgartner TG, Bersin RM, Buchalter S, Curry SH, Duncan CA, Harman EM, Henderson GN, Jenkinson S, Lachin JM, Lorenz A, Schneider SH, Siegel JH, Summer WR, Thompson D, Wolfe CL, Zorovich B (1992) A controlled clinical trial of dichloroacetate for treatment of lactic acidosis in adults. N Engl J Med 327(22):1564–1569CrossRefGoogle Scholar
  2. 2.
    Broder G, Weil MH (1964) Excess lactate: an index of reversibility of shock in human patients. Science 143(3613):1457–1459CrossRefGoogle Scholar
  3. 3.
    Tumang CA, Borges EP, Reis BF (2001) Multicommutation flow system for spectrophotometric l(+)lactate determination in silage material using an enzymatic reaction. Anal Chim Acta 438(1):59–65CrossRefGoogle Scholar
  4. 4.
    Goran JM, Lyon JL, Stevenson KJ (2011) Amperometric detection of l-lactate using nitrogen-doped carbon nanotubes modified with lactate oxidase. Anal Chem 83(21):8123–8129CrossRefGoogle Scholar
  5. 5.
    Brand A, Singer K, Koehl Gudrun E, Kolitzus M, Schoenhammer G, Thiel A, Matos C, Bruss C, Klobuch S, Peter K, Kastenberger M, Bogdan C, Schleicher U, Mackensen A, Ullrich E, Fichtner-Feigl S, Kesselring R, Mack M, Ritter U, Schmid M, Blank C, Dettmer K et al (2016) LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells. Cell Metab 24(5):657–671CrossRefGoogle Scholar
  6. 6.
    Romero MR, Ahumada F, Garay F, Baruzzi AM (2010) Amperometric biosensor for direct blood lactate detection. Anal Chem 82(13):5568–5572CrossRefGoogle Scholar
  7. 7.
    He Y, Niu X, Shi L, Zhao H, Li X, Zhang W, Pan J, Zhang X, Yan Y, Lan M (2017) Photometric determination of free cholesterol via cholesterol oxidase and carbon nanotube supported Prussian blue as a peroxidase mimic. Microchim Acta 184(7):2181–2189CrossRefGoogle Scholar
  8. 8.
    Qu F, Li T, Yang M (2011) Colorimetric platform for visual detection of cancer biomarker based on intrinsic peroxidase activity of graphene oxide. Biosens Bioelectron 26(9):3927–3931CrossRefGoogle Scholar
  9. 9.
    Li W, Chen B, Zhang H, Sun Y, Wang J, Zhang J, Fu Y (2015) BSA-stabilized Pt nanozyme for peroxidase mimetics and its application on colorimetric detection of mercury(II) ions. Biosens Bioelectron 66:251–258CrossRefGoogle Scholar
  10. 10.
    Kim MI, Shim J, Li T, Lee J, Park HG (2011) Fabrication of nanoporous nanocomposites entrapping Fe3O4 magnetic nanoparticles and oxidases for colorimetric biosensing. Chem Eur J 17(38):10700–10707CrossRefGoogle Scholar
  11. 11.
    Guan J, Peng J, Jin X (2015) Synthesis of copper sulfide nanorods as peroxidase mimics for the colorimetric detection of hydrogen peroxide. Anal Methods 7(13):5454–5461CrossRefGoogle Scholar
  12. 12.
    Chu BH, Kang BS, Ren F, Chang CY, Wang YL, Pearton SJ, Glushakov AV, Dennis DM, Johnson JW, Rajagopal P, Roberts JC, Piner EL, Linthicum KJ (2008) Enzyme-based lactic acid detection using AlGaN∕GaN high electron mobility transistors with ZnO nanorods grown on the gate region. Appl Phys Lett 93(4):042114CrossRefGoogle Scholar
  13. 13.
    Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2:577–583CrossRefGoogle Scholar
  14. 14.
    Jv Y, Li B, Cao R (2010) Positively-charged gold nanoparticles as peroxidiase mimic and their application in hydrogen peroxide and glucose detection. Chem Commun 46(42):8017–8019CrossRefGoogle Scholar
  15. 15.
    Mu J, Wang Y, Zhao M, Zhang L (2012) Intrinsic peroxidase-like activity and catalase-like activity of Co3O4 nanoparticles. Chem Commun 48(19):2540–2542CrossRefGoogle Scholar
  16. 16.
    André R, Natálio F, Humanes M, Leppin J, Heinze K, Wever R, Schröder H-C, Müller WEG, Tremel W (2011) V2O5 nanowires with an intrinsic peroxidase-like activity. Adv Funct Mater 21(3):501–509CrossRefGoogle Scholar
  17. 17.
    Tian J, Liu Q, Asiri AM, Qusti AH, Al-Youbi AO, Sun X (2013) Ultrathin graphitic carbon nitride nanosheets: a novel peroxidase mimetic, Fe doping-mediated catalytic performance enhancement and application to rapid, highly sensitive optical detection of glucose. Nanoscale 5(23):11604–11609CrossRefGoogle Scholar
  18. 18.
    Su L, Feng J, Zhou X, Ren C, Li H, Chen X (2012) Colorimetric detection of urine glucose based ZnFe2O4 magnetic nanoparticles. Anal Chem 84(13):5753–5758CrossRefGoogle Scholar
  19. 19.
    Nasir M, Nawaz MH, Latif U, Yaqub M, Hayat A, Rahim A (2017) An overview on enzyme-mimicking nanomaterials for use in electrochemical and optical assays. Microchim Acta 184(2):323–342CrossRefGoogle Scholar
  20. 20.
    Zhang W, Ma D, Du J (2014) Prussian blue nanoparticles as peroxidase mimetics for sensitive colorimetric detection of hydrogen peroxide and glucose. Talanta 120:362–367CrossRefGoogle Scholar
  21. 21.
    Zeng K, Yang M, Liu Y-N, Rasooly A (2018) Dual function hollow structured mesoporous Prussian blue mesocrystals for glucose biosensors. Anal Methods 10(32):3951–3957CrossRefGoogle Scholar
  22. 22.
    Su L, Xiong Y, Yang H, Zhang P, Ye F (2016) Prussian blue nanoparticles encapsulated inside a metal–organic framework via in situ growth as promising peroxidase mimetics for enzyme inhibitor screening. J Mater Chem B 4(1):128–134CrossRefGoogle Scholar
  23. 23.
    Michopoulos A, Kouloumpis A, Gournis D, Prodromidis MI (2014) Performance of layer-by-layer deposited low dimensional building blocks of graphene-Prussian blue onto graphite screen-printed electrodes as sensors for hydrogen peroxide. Electrochim Acta 146:477–484CrossRefGoogle Scholar
  24. 24.
    Wang T, Fu Y, Chai L, Chao L, Bu L, Meng Y, Chen C, Ma M, Xie Q, Yao S (2014) Filling carbon nanotubes with Prussian blue nanoparticles of high peroxidase-like catalytic activity for colorimetric chemo- and biosensing. Chem Eur J 20(9):2623–2630CrossRefGoogle Scholar
  25. 25.
    Han L, Li C, Zhang T, Lang Q, Liu A (2015) Au@Ag heterogeneous nanorods as nanozyme interfaces with peroxidase-like activity and their application for one-pot analysis of glucose at nearly neutral pH. ACS Appl Mater Interfaces 7(26):14463–14470CrossRefGoogle Scholar
  26. 26.
    Lee Y, Garcia MA, Frey Huls NA, Sun S (2010) Synthetic tuning of the catalytic properties of Au-Fe3O4 nanoparticles. Angew Chem 122(7):1293–1296CrossRefGoogle Scholar
  27. 27.
    Tao Y, Lin Y, Huang Z, Ren J, Qu X (2013) Incorporating graphene oxide and gold nanoclusters: a synergistic catalyst with surprisingly high peroxidase-like activity over a broad pH range and its application for cancer cell detection. Adv Mater 25(18):2594–2599CrossRefGoogle Scholar
  28. 28.
    Ming H, Shuhei F, Ryo O, Hiroaki S, Yoshihiro N, Julien R, Susumu K, Yusuke Y (2012) Synthesis of Prussian blue nanoparticles with a hollow interior by controlled chemical etching. Angew Chem 124(4):1008–1012CrossRefGoogle Scholar
  29. 29.
    Kim M-C, Lee D, Jeong SH, Lee S-Y, Kang E (2016) Nanodiamond-gold nanocomposites with the peroxidase-like oxidative catalytic activity. ACS Appl Mater Interfaces 8(50):34317–34326CrossRefGoogle Scholar
  30. 30.
    Liu M, Zhao H, Chen S, Yu H, Quan X (2012) Interface engineering catalytic graphene for smart colorimetric biosensing. ACS Nano 6(4):3142–3151CrossRefGoogle Scholar
  31. 31.
    Komkova MA, Karyakina EE, Karyakin AA (2018) Catalytically synthesized Prussian blue nanoparticles defeating natural enzyme peroxidase. J Am Chem Soc 140(36):11302–11307CrossRefGoogle Scholar
  32. 32.
    Zheng XT, Yang HB, Li CM (2010) Optical detection of single cell lactate release for cancer metabolic analysis. Anal Chem 82(12):5082–5087CrossRefGoogle Scholar
  33. 33.
    Hu A-L, Liu Y-H, Deng H-H, Hong G-L, Liu A-L, Lin X-H, Xia X-H, Chen W (2014) Fluorescent hydrogen peroxide sensor based on cupric oxide nanoparticles and its application for glucose and l-lactate detection. Biosens Bioelectron 61:374–378CrossRefGoogle Scholar
  34. 34.
    Ballesta-Claver J, Valencia-Mirón MC, Capitán-Vallvey LF (2008) One-shot lactate chemiluminescent biosensor. Anal Chim Acta 629(1):136–144CrossRefGoogle Scholar
  35. 35.
    Zhang L, Hou W, Lu Q, Liu M, Chen C, Zhang Y, Yao S (2016) Colorimetric detection of hydrogen peroxide and lactate based on the etching of the carbon based Au-Ag bimetallic nanocomposite synthesized by carbon dots as the reductant and stabilizer. Anal Chim Acta 947:23–31CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical EngineeringCentral South UniversityChangshaChina

Personalised recommendations