Microchimica Acta

, 186:104 | Cite as

Magnetic silica nanoparticles for use in matrix-assisted laser desorption ionization mass spectrometry of labile biomolecules such as oligosaccharides, amino acids, peptides and nucleosides

  • Hongmei Yang
  • Rui Su
  • John S. Wishnok
  • Ning LiuEmail author
  • Changbao Chen
  • Shuying Liu
  • Steven R. TannenbaumEmail author
Original Paper


Magnetic silica nanoparticles (MSNPs) were prepared and applied for the first time as a matrix in MALDI MS for analysis of small thermally labile biomolecules including oligosaccharides, amino acids, peptides, nucleosides, and ginsenosides. The matrix was characterized by scanning electron microscopy and UV-vis spectroscopy. It displays good performance in analyses of such biomolecules in the positive ion mode. In addition, the method generates significantly less energetic ions compared to the use of carbon nanotubes or graphene-assisted LDI MS and thus produces intact molecular ions with little or no fragmentation. In addition, the MSNPs have better surface homogeneity and better salt tolerance and cause lower noise. It is assumed that the soft ionization observed when using MSNPs as a matrix is due to the specific surface area and the homogenous surface without large clusters. The matrices were applied to the unambiguous identification and relative quantitation of the water extract of Panax ginseng roots. Any false-positive results as obtained when using graphene and carbon nanotubes as a matrix were not observed.

Graphical abstract

Schematic presentation of the application of magnetic silica nanoparticles in laser desorption ionization mass spectrometry. Their use results in little or no fragmentation during analysis of small labile biomolecules with some advantages such as better surface homogeneity, high salt tolerance, and lower noise.


Soft matrix Small thermal labile biomolecules Little or no fragmentation High salt tolerance Reduced chemical background Ultrahigh sensitivity Reliable quantitative assay LDI MS 



This work was supported by the Science and Technology Development Planning Project of Jilin Province (no. 20170623026TC, 20160101220JC, 20160204027YY, 201603080YY), Chinese Medicine Technology Project of Jilin Province (no. 2018DZ02), and the Health Technology Innovation Project of Jilin Province (no. 2016 J098).

Compliance with ethical standards

The authors declare that they have no competing interests.

Supplementary material

604_2018_3208_MOESM1_ESM.docx (326 kb)
ESM 1 (DOCX 326 kb)


  1. 1.
    Scott DE, Bayly AR, Abell C, Skidmore J (2016) Small molecules, big targets: drug discovery faces the protein-protein interaction challenge. Nat Rev Drug Discov 15:533–550. CrossRefPubMedGoogle Scholar
  2. 2.
    May M (2015) Synthetic biology's clinical applications. Science 349:1564–1566. CrossRefGoogle Scholar
  3. 3.
    Wolan DW, Zorn JA, Gray DC, Wells JA (2009) Small-molecule activators of a proenzyme. Science 326:853–858. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Lubin A, De Vries R, Cabooter D, Augustijns P, Cuyckens FJ (2017) An atmospheric pressure ionization source using a high voltage target compared to electrospray ionization for the LC/MS analysis of pharmaceutical compounds. Pharm Biomed Anal 142:225–231. CrossRefGoogle Scholar
  5. 5.
    Evans AM, DeHaven CD, Barrett T, Mitchell M, Milgram E (2009) Integrated, nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems. Anal Chem 81:6656–6667. CrossRefPubMedGoogle Scholar
  6. 6.
    Yang HM, Wang JW, Song FR, Zhou YH, Liu SY (2011) Isoliquiritigenin (4,2′,4′-trihydroxychalcone): a new matrix-assisted laser desorption/ionization matrix with outstanding properties for the analysis of neutral oligosaccharides. Anal Chim Acta 701:45–51. CrossRefPubMedGoogle Scholar
  7. 7.
    Bechara C, Bolbach G, Bazzaco P, Sharma KS, Durand G, Popot JL, Zito F, Sagan S (2012) MALDI-TOF mass spectrometry analysis of amphipol-trapped membrane proteins. Anal Chem 84:6128–6135. CrossRefPubMedGoogle Scholar
  8. 8.
    Yang HM, Liu N, Liu SY (2013) Determination of peptide and protein disulfide linkages by MALDI mass spectrometry. Top Curr Chem 331:79–116. CrossRefPubMedGoogle Scholar
  9. 9.
    Abdelhamid HN (2017) Organic matrices, ionic liquids, and organic matrices@nanoparticles assisted laser desorption/ionization mass spectrometry. Trends Anal Chem 89:68–−98. CrossRefGoogle Scholar
  10. 10.
    Abdelhamid HN, Wu HF (2013) Furoic and mefenamic acids as new matrices for matrix assisted laser desorption/ionization-(MALDI)-mass spectrometry. Talanta 115:442–450. CrossRefPubMedGoogle Scholar
  11. 11.
    van Kampen JJ, Burgers PC, de Groot R, Gruters RA, Luider TM (2011) Biomedical application of MALDI mass spectrometry for small-molecule analysis. Mass Spectrom Rev 30:101–120. CrossRefPubMedGoogle Scholar
  12. 12.
    Abdelhamid HN (2016) Ionic liquids for mass spectrometry: matrices, separation and microextraction. Trends Anal Chem 77:122–−138. CrossRefGoogle Scholar
  13. 13.
    Abdelhamid HN (2018) Nanoparticle assisted laser desorption/ionization mass spectrometry for small molecule analytes. Microchim Acta 185:200–−215. CrossRefGoogle Scholar
  14. 14.
    Sekuła J, Nizioł J, Rode W, Ruman T (2015) Gold nanoparticle-enhanced target (AuNPET) as universal solution for laser desorption/ionization mass spectrometry analysis and imaging of low molecular weight compounds. Anal Chim Acta 875:61–72. CrossRefPubMedGoogle Scholar
  15. 15.
    Hua PY, Manikandan M, Abdelhamid HN, Wu HF (2014) Graphene nanoflakes as an efficient ionizing matrix for MALDI-MS based lipidomics of cancer cells and cancer stem cells. J Mater Chem B 2:7334–7343. CrossRefGoogle Scholar
  16. 16.
    Shi CY, Deng CH (2016) Recent advances in inorganic materials for LDI-MS analysis of small molecules. Analyst 141:2816–2826. CrossRefPubMedGoogle Scholar
  17. 17.
    Abdelhamid HN, Lin YC, Wu HF (2017) Thymine chitosan nanomagnets for specific preconcentration of mercury (II) prior to analysis using SELDI-MS. Microchim Acta 184:1517–1527. CrossRefGoogle Scholar
  18. 18.
    Chen YS, Ding J, He XM, Xu J, Feng YQ (2018) Synthesis of tellurium nanosheet for use in matrix assisted laser desorption/ionization time-of-flight mass spectrometry of small molecules. Microchim Acta 185:368–−376. CrossRefGoogle Scholar
  19. 19.
    Abdelhamid HN, Wu BS, Wu HF (2014) Graphene coated silica applied for high ionization matrix assisted laser desorption/ionization mass spectrometry: a novel approach for environmental and biomolecule analysis. Talanta 126:27–37. CrossRefGoogle Scholar
  20. 20.
    Kailasa SK, Wu HF (2013) Surface-assisted laser desorption-ionization mass spectrometry of oligosaccharides using magnesium oxide nanoparticles as a matrix. Microchim Acta 180:405–413. CrossRefGoogle Scholar
  21. 21.
    Marsico AL, Duncan B, Landis RF, Tonga GY, Rotello VM, Vachet RW (2017) Enhanced laser desorption/ionization mass spectrometric detection of biomolecules using gold nanoparticles, matrix, and the coffee ring effect. Anal Chem 89:3009–3014. CrossRefPubMedGoogle Scholar
  22. 22.
    Phan NT, Mohammadi AS, Pour MD, Ewing AG (2016) Laser desorption ionization mass spectrometry imaging of drosophila brain using matrix sublimation versus modification with nanoparticles. Anal Chem 88:1734–1741. CrossRefPubMedGoogle Scholar
  23. 23.
    Spencer MT, Furutani H, Oldenburg SJ, Darlington TK, Prather KA (2008) Gold nanoparticles as a matrix for visible-wavelength single-particle matrix-assisted laser desorption/ionization mass spectrometry of small biomolecules. J Phys Chem C 112:4083–4090. CrossRefGoogle Scholar
  24. 24.
    Liang QL, Macher T, Xu YL, Bao YP, Cassady CJ (2014) MALDI MS in-source decay of glycans using a glutathione-capped iron oxide nanoparticle matrix. Anal Chem 86:8496–8503. CrossRefPubMedGoogle Scholar
  25. 25.
    Warren AD, Conway U, Arthur CJ, Gates PJ (2016) Investigation of colloidal graphite as a matrix for matrix-assisted laser desorption/ionisation mass spectrometry of low molecular weight analytes. J Mass Spectrom 51:491–503. CrossRefPubMedGoogle Scholar
  26. 26.
    Wei J, Buriak JM, Siuzdak G (1999) Desorption–ionization mass spectrometry on porous silicon. Nature 399:243–246. CrossRefPubMedGoogle Scholar
  27. 27.
    Go EP, Apon JV, Luo G, Saghatelian A, Daniels RH, Sahi V, Dubrow R, Cravatt BF, Vertes A, Siuzdak G (2005) Desorption/ionization on silicon nanowires. Anal Chem 77:1641–1646. CrossRefPubMedGoogle Scholar
  28. 28.
    Shao MF, Ning FY, Zhao JW, Wei M, Evans DG, Duan X (2012) Preparation of Fe3O4@SiO2@layered double hydroxide core-shell microspheres for magnetic separation of proteins. J Am Chem Soc 134:1071–1077. CrossRefPubMedGoogle Scholar
  29. 29.
    Tietze R, Zaloga J, Unterweger H, Lyer S, Friedrich RP, Janko C, Pöttler M, Dürr S, Alexiou C (2015) Magnetic nanoparticle-based drug delivery for cancer therapy. Biochem Biophys Res Commun 468:463–470. CrossRefPubMedGoogle Scholar
  30. 30.
    Im SH, Herricks T, Lee YT, Xia YN (2005) Synthesis and characterization of monodisperse silica colloids loaded with superparamagnetic iron oxide nanoparticles. Chem Phys Lett 401:19–23. CrossRefGoogle Scholar
  31. 31.
    Zou ZQ, Ibisate M, Zhou Y, Aebersold R, Xia YN, Zhang H (2008) Synthesis and evaluation of superparamagnetic silica particles for extraction of glycopeptides in the microtiter plate format. Anal Chem 80:1228–1234. CrossRefPubMedGoogle Scholar
  32. 32.
    Wang JN, Qiu SL, Chen SM, Xiong CQ, Liu HH, Wang JY, Zhang N, Hou J, He Q, Nie ZX (2015) MALDI-TOF MS imaging of metabolites with a N-(1-Naphthyl) ethylenediamine dihydrochloride matrix and its application to colorectal cancer liver metastasis. Anal Chem 87:422–430. CrossRefPubMedGoogle Scholar
  33. 33.
    Chen YL, Gao D, Bai HR, Liu HX, Lin S, Jiang YY (2016) Carbon dots and 9AA as a binary matrix for the detection of small molecules by matrix-assisted laser desorption/ionization mass spectrometry. J Am Soc Mass Spectrom 27:1227–1235. CrossRefPubMedGoogle Scholar
  34. 34.
    Yang HM, Li ZJ, Wan DB, Lian WH, Liu SY (2013) Identification of reducing and nonreducing neutral carbohydrates by laser-enhanced in-source decay (LEISD) MALDI MS. J Mass Spectrom 48:539–543. CrossRefPubMedGoogle Scholar
  35. 35.
    Yang HM, Wan DB, Song FR, Liu ZQ, Liu SY (2013) Argon direct analysis in real time mass spectrometry in conjunction with makeup solvents: a method for analysis of labile compounds. Anal Chem 85:1305–1309. CrossRefPubMedGoogle Scholar
  36. 36.
    Ru WW, Wang DL, Xu YP, He XX, Sun YE, Qian LY, Zhou XS, Qin YF (2015) Chemical constituents and bioactivities of Panax ginseng (C. A. Mey.). Drug Discov Ther 9:23–32. CrossRefPubMedGoogle Scholar
  37. 37.
    Wan DB, Jiao LL, Yang HM, Liu SY (2012) Structural characterization and immunological activities of the water-soluble oligosaccharides isolated from the Panax ginseng roots. Planta 235:1289–1297. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Hongmei Yang
    • 1
    • 2
  • Rui Su
    • 1
  • John S. Wishnok
    • 2
  • Ning Liu
    • 3
    • 4
    Email author
  • Changbao Chen
    • 1
  • Shuying Liu
    • 1
  • Steven R. Tannenbaum
    • 2
    • 5
    Email author
  1. 1.Changchun University of Chinese MedicineChangchunChina
  2. 2.Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Central LaboratoryThe Second Hospital of Jilin UniversityChangchunChina
  4. 4.Key Laboratory of Zoonosis Research, Ministry of EducationJilin UniversityChangchunChina
  5. 5.Department of ChemistryMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations