Advertisement

Microchimica Acta

, 186:126 | Cite as

Nanoparticle- and microparticle-based luminescence imaging of chemical species and temperature in aquatic systems: a review

  • Maria Moßhammer
  • Kasper Elgetti Brodersen
  • Michael KühlEmail author
  • Klaus KorenEmail author
Review Article

Abstract

Most aquatic systems rely on a multitude of biogeochemical processes that are coupled with each other in a complex and dynamic manner. To understand such processes, minimally invasive analytical tools are required that allow continuous, real-time measurements of individual reactions in these complex systems. Optical chemical sensors can be used in the form of fiber-optic sensors, planar sensors, or as micro- and nanoparticles (MPs and NPs). All have their specific merits, but only the latter allow for visualization and quantification of chemical gradients over 3D structures. This review (with 147 references) summarizes recent developments mainly in the field of optical NP sensors relevant for chemical imaging in aquatic science. The review encompasses methods for signal read-out and imaging, preparation of NPs and MPs, and an overview of relevant MP/NP-based sensors. Additionally, examples of MP/NP-based sensors in aquatic systems such as corals, plant tissue, biofilms, sediments and water-sediment interfaces, marine snow and in 3D bioprinting are given. We also address current challenges and future perspectives of NP-based sensing in aquatic systems in a concluding section.

Graphical abstract

Keywords

Optical sensing Aquatic sciences Chemical gradients Fluorescence Phosphorescence Oxygen pH Nanomaterials 

Notes

Acknowledgements

This study was supported by a Sapere-Aude Advanced grant from the Independent Research Fund Denmark (DFF-1323-00065B; MK), project grants from the Independent Research Fund Denmark | Natural Sciences (DFF-8021-00308B; MK) & Technical and Production Sciences (DFF-8022-00301B and DFF-4184-00515B; MK), the Villum Foundation (Grant no. 00023073; MK), the Poul Due Jensen Foundation (KK), and a Carlsberg Foundation Postdoctoral Fellowship (CF16-0899; KEB).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2018_3202_MOESM1_ESM.docx (480 kb)
ESM 1 (DOCX 479 kb)

References

  1. 1.
    Borisov SM, Klimant I (2008) Optical nanosensors - smart tools in bioanalytics. Analyst 133:1302–1307.  https://doi.org/10.1039/b805432k CrossRefPubMedGoogle Scholar
  2. 2.
    Papkovsky DB, Dmitriev RI (2013) Biological detection by optical oxygen sensing. Chem Soc Rev 42:8700–8732.  https://doi.org/10.1039/c3cs60131e CrossRefPubMedGoogle Scholar
  3. 3.
    Wencel D, Abel T, McDonagh C (2014) Optical chemical pH sensors. Anal Chem 86:15–29.  https://doi.org/10.1021/ac4035168 CrossRefPubMedGoogle Scholar
  4. 4.
    McDonagh C, Burke CS, MacCraith BD (2008) Optical chemical sensors. Chem Rev 108:400–422.  https://doi.org/10.1021/cr068102g CrossRefPubMedGoogle Scholar
  5. 5.
    Murthy SK (2007) Nanoparticles in modern medicine: state of the art and future challenges. Int J Nanomedicine 2:129–141.  https://doi.org/10.1016/j.cell.2015.01.054 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Glud RN, Wenzhöfer F, Tengberg A, Middelboe M, Oguri K, Kitazato H (2005) Distribution of oxygen in surface sediments from central Sagami Bay, Japan: in situ measurements by microelectrodes and planar optodes. Deep Sea Res Part I Oceanogr Res Pap 52:1974–1987.  https://doi.org/10.1016/j.dsr.2005.05.004 CrossRefGoogle Scholar
  7. 7.
    Moore C, Barnard A, Fietzek P, Lewis MR, Sosik HM, White S, Zielinski O (2009) Optical tools for ocean monitoring and research. Ocean Sci 5:661–684.  https://doi.org/10.5194/os-5-661-2009 CrossRefGoogle Scholar
  8. 8.
    Hancke K, Sorell BK, Lund-Hansen LC, Larsen M, Hancke T, Glud RN (2014) Effects of temperature and irradiance on a benthic microalgal community: a combined two-dimensional oxygen and fluorescence imaging approach. Limnol Oceanogr 59:1599–1611.  https://doi.org/10.4319/lo.2014.59.5.1599 CrossRefGoogle Scholar
  9. 9.
    Ge X, Kostov Y, Henderson R, Selock N, Rao G (2014) A low-cost fluorescent sensor for pCO2 measurements. Chemosensors 2:108–120.  https://doi.org/10.3390/chemosensors2020108 CrossRefGoogle Scholar
  10. 10.
    Borisov SM (2018) Fundamentals of quenched and rational design of sensor materials. In: Papkovsky DB, Dmitriev RI (eds) Quenched-phosphorescence detection of molecular oxygen: applications in life science, 1st edn. The Royal Society of Chemistry, Cambridge, pp 1–18Google Scholar
  11. 11.
    Lobnik A, Turel M, Urek Š (2012) Optical chemical sensors: design and applications. In: Wang W (ed) Advances in Chemical Sensors. IntechOpen, pp 1–28Google Scholar
  12. 12.
    Mistlberger G, Crespo GA, Bakker E (2014) Ionophore-based optical sensors. Annu Rev Anal Chem 7:483–512.  https://doi.org/10.1146/annurev-anchem-071213-020307 CrossRefGoogle Scholar
  13. 13.
    Wolfbeis OS (2005) Materials for fluorescence-based optical chemical sensors. J Mater Chem 15:2657–2669.  https://doi.org/10.1039/b501536g CrossRefGoogle Scholar
  14. 14.
    Meier RJ, Fischer LH, Wolfbeis OS, Schäferling M (2013) Referenced luminescent sensing and imaging with digital color cameras: a comparative study. Sensors Actuators B 177:500–506.  https://doi.org/10.1016/j.snb.2012.11.041 CrossRefGoogle Scholar
  15. 15.
    Koren K, Kühl M (2018) Optical O2 sensing in aquatic systems and organisms. In: Papkovsky DB, Dmitriev RI (eds) Quenched-phosphorescence detection of molecular oxygen: applications in life science, 1st edn. The Royal Society of Chemistry, Cambridge, pp 145–174CrossRefGoogle Scholar
  16. 16.
    Wang X, Wolfbeis OS (2014) Optical methods for sensing and imaging oxygen: materials, spectroscopies and applications. Chem Soc Rev 43:3666–3761.  https://doi.org/10.1039/c4cs00039k CrossRefPubMedGoogle Scholar
  17. 17.
    Wolfbeis OS (2015) Luminescent sensing and imaging of oxygen: fierce competition to the Clark electrode. Bioessays 37:921–928.  https://doi.org/10.1002/bies.201500002 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Körtzinger A, Schimanski J, Send U (2004) High quality oxygen measurements from profiling floats: a promising new technique. J Atmos Ocean Technol 22:302–308.  https://doi.org/10.1175/JTECH1701.1 CrossRefGoogle Scholar
  19. 19.
    Sevilla III F, Narayanaswamy R (2003) Optical chemical sensors and biosensors. In: Alegret S (ed) Comprehensive Analytical Chemistry. Elsevier B.V., pp 413–435Google Scholar
  20. 20.
    Holst GA, Klimant I, Kühl M, Kohls O (1999) Optical microsensors and microprobes. In: Varney M (ed) Chemical sensors in oceanography. Gordon Breach Science PublishersGoogle Scholar
  21. 21.
    Wang X, Wolfbeis OS (2016) Fiber-optic chemical sensors and biosensors (2013 − 2015). Anal Chem 88:203–227.  https://doi.org/10.1021/acs.analchem.5b04298 CrossRefPubMedGoogle Scholar
  22. 22.
    Klimant I, Meyer V, Kühl M (1995) Fiber-optic oxygen microsensors, a new tool in aquatic biology. Limnol Oceanogr 40:1159–1165.  https://doi.org/10.4319/lo.1995.40.6.1159 CrossRefGoogle Scholar
  23. 23.
    Klimant I, Kühl M, Glud RN, Holst G (1997) Optical measurement of oxygen and temperature in microscale: strategies and biological applications. Sensors Actuators B 38–39:29–37.  https://doi.org/10.1016/S0925-4005(97)80168-2 CrossRefGoogle Scholar
  24. 24.
    Neurauter G, Klimant I, Wolfbeis OS (2000) Fiber-optic microsensor for high resolution pCO2 sensing in marine environment. Fresenius J Anal Chem 366:481–487.  https://doi.org/10.1007/s002160050097 CrossRefPubMedGoogle Scholar
  25. 25.
    Fabricius-Dyg J, Mistlberger G, Staal M, Borisov SM, Klimant I, Kühl M (2012) Imaging of surface O2 dynamics in corals with magnetic micro optode particles. Mar Biol 159:1621–1631.  https://doi.org/10.1007/s00227-012-1920-y CrossRefGoogle Scholar
  26. 26.
    Kühl M (2005) Optical microsensors for analysis of microbial communities. In: Leadbetter JR. In: Methods in enzymology, vol 397, pp 166–199Google Scholar
  27. 27.
    Herbert NA, Bröhl S, Springer K, Kunzmann A (2017) Clownfish in hypoxic anemones replenish host O2 at only localised scales. Sci Rep 7:1–10.  https://doi.org/10.1038/s41598-017-06695-x CrossRefGoogle Scholar
  28. 28.
    Jokic T, Borisov SM, Saf R, Nielsen DA, Kühl M, Klimant I (2012) Highly Photostable near-infrared fluorescent pH indicators and sensors based on BF2-chelated Tetraarylazadipyrromethene dyes. Anal Chem 84:6723–6730.  https://doi.org/10.1021/ac3011796 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Holtappels M, Noss C, Hancke K, Cathalot C, McGinnis DF, Lorke A, Glud RN (2015) Aquatic eddy correlation: quantifying the artificial flux caused by stirring-sensitive O2 sensors. PLoS One 10:1–20.  https://doi.org/10.1371/journal.pone.0116564 CrossRefGoogle Scholar
  30. 30.
    Glud RN, Ramsing NB, Gundersen JK, Klimant I (1996) Planar optrodes: a new tool for fine scale measurements of two-dimensional O2 distribution in benthic communities. Mar Ecol Prog Ser 140:217–226.  https://doi.org/10.3354/meps140217 CrossRefGoogle Scholar
  31. 31.
    Larsen M, Borisov SM, Grunwald B, Klimant I, Glud RN (2011) A simple and inexpensive high resolution color ratiometric planar optode imaging approach: application to oxygen and pH sensing. Limnol Oceanogr Methods 9:348–360.  https://doi.org/10.4319/lom.2011.9.348 CrossRefGoogle Scholar
  32. 32.
    Moßhammer M, Strobl M, Kühl M, Klimant I, Borisov SM, Koren K (2016) Design and application of an optical sensor for simultaneous imaging of pH and dissolved O2 with low cross-talk. ACS Sensors 1:681–687.  https://doi.org/10.1021/acssensors.6b00071 CrossRefGoogle Scholar
  33. 33.
    Blossfeld S, Gansert D (2007) A novel non-invasive optical method for quantitative visualization of pH dynamics in the rhizosphere of plants. Plant Cell Environ 30:176–186.  https://doi.org/10.1111/j.1365-3040.2006.01616.x CrossRefPubMedGoogle Scholar
  34. 34.
    Strobl M, Rappitsch T, Borisov SM, Mayr T, Klimant I (2015) NIR-emitting aza-BODIPY dyes – new building blocks for broad-range optical pH sensors. Analyst 140:7150–7153.  https://doi.org/10.1039/C5AN01389E CrossRefPubMedGoogle Scholar
  35. 35.
    Hulth S, Aller RC, Engström P, Selander E (2002) A pH plate fluorosensor (optode) for early diagenetic studies of marine sediments. Limnol Oceanogr 47:212–220.  https://doi.org/10.4319/lo.2002.47.1.0212 CrossRefGoogle Scholar
  36. 36.
    Zhu Q, Aller RC (2013) Planar fluorescence sensors for two-dimensional measurements of H2S distributions and dynamics in sedimentary deposits. Mar Chem 157:49–58.  https://doi.org/10.1016/j.marchem.2013.08.001 CrossRefGoogle Scholar
  37. 37.
    Zhu Q, Aller RC, Fan Y (2006) A new ratiometric, planar fluorosensor for measuring high resolution, two-dimensional pCO2 distributions in marine sediments. Mar Chem 101:40–53.  https://doi.org/10.1016/j.marchem.2006.01.002 CrossRefGoogle Scholar
  38. 38.
    Schroeder CR, Neurauter G, Klimant I (2007) Luminescent dual sensor for time-resolved imaging of pCO2 and pO2 in aquatic systems. Microchim Acta 158:205–218.  https://doi.org/10.1007/s00604-006-0696-5 CrossRefGoogle Scholar
  39. 39.
    Zhu Q, Aller RC (2010) A rapid response, planar fluorosensor for measuring two-dimensional pCO2 distributions and dynamics in marine sediments. Limnol Oceanogr Methods 8:326–336.  https://doi.org/10.4319/lom.2010.8.326 CrossRefGoogle Scholar
  40. 40.
    Strömberg N, Hulth S (2005) Assessing an imaging ammonium sensor using time correlated pixel-by-pixel calibration. Anal Chim Acta 550:61–68.  https://doi.org/10.1016/j.aca.2005.06.074 CrossRefGoogle Scholar
  41. 41.
    Waich K, Mayr T, Klimant I (2008) Fluorescence sensors for trace monitoring of dissolved ammonia. Talanta 77:66–72.  https://doi.org/10.1016/j.talanta.2008.05.058 CrossRefPubMedGoogle Scholar
  42. 42.
    Fischer JP, Wenzhöfer F (2010) A novel planar optode setup for concurrent oxygen and light field imaging: application to a benthic phototrophic community. Limnol Oceanogr Methods 8:254–268.  https://doi.org/10.4319/lom.2010.8.254 CrossRefGoogle Scholar
  43. 43.
    Glud RN, Tengberg A, Kühl M, Hall POJ, Klimant I (2001) An in situ instrument for planar O2 optode measurements at benthic interfaces. Limnol Oceanogr 46:2073–2080.  https://doi.org/10.4319/lo.2001.46.8.2073 CrossRefGoogle Scholar
  44. 44.
    Frederiksen MS, Glud RN (2006) Oxygen dynamics in the rhizosphere of Zostera marina: a two-dimensional planar optode study. Limnol Oceanogr 51:1072–1083.  https://doi.org/10.4319/lo.2006.51.2.1072 CrossRefGoogle Scholar
  45. 45.
    Brodersen KE, Koren K, Moßhammer M, Ralph PJ, Kühl M, Santner J (2017) Seagrass-mediated phosphorus and Iron Solubilization in tropical sediments. Environ Sci Technol 51:14155–14163.  https://doi.org/10.1021/acs.est.7b03878 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Koop-Jakobsen K, Wenzhöfer F (2015) The dynamics of plant-mediated sediment oxygenation in Spartina anglica rhizospheres - a planar Optode study. Estuar Coasts 38:951–963.  https://doi.org/10.1007/s12237-014-9861-y CrossRefGoogle Scholar
  47. 47.
    Jensen SI, Kühl M, Glud RN, Jørgensen LB, Priemé A (2005) Oxic microzones and radial oxygen loss from roots of Zostera marina. Mar Ecol Prog Ser 293:49–58CrossRefGoogle Scholar
  48. 48.
    Kühl M, Holst G, Larkum AWD, Ralph PJ (2008) Imaging of oxygen dynamics within the endolithic algal community of the massive coral Porites lobata. J Phycol 44:541–550.  https://doi.org/10.1111/j.1529-8817.2008.00506.x CrossRefPubMedGoogle Scholar
  49. 49.
    Kühl M, Behrendt L, Trampe E, Qvortrup K, Schreiber U, Borisov SM, Klimant I, Larkum AWD (2012) Microenvironmental ecology of the chlorophyll b-containing symbiotic cyanobacterium Prochloron in the Didemnid ascidian Lissoclinum patella. Front Microbiol 3:1–18.  https://doi.org/10.3389/fmicb.2012.00402 CrossRefGoogle Scholar
  50. 50.
    Santner J, Larsen M, Kreuzeder A, Glud RN (2015) Two decades of chemical imaging of solutes in sediments and soils – a review. Anal Chim Acta 878:9–42.  https://doi.org/10.1016/j.aca.2015.02.006 CrossRefPubMedGoogle Scholar
  51. 51.
    Kühl M, Rickelt LF, Thar R (2007) Combined imaging of bacteria and oxygen in biofilms. Appl Environ Microbiol 73:6289–6295.  https://doi.org/10.1128/AEM.01574-07 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Koren K, Jakobsen SL, Kühl M (2016) In-vivo imaging of O2 dynamics on coral surfaces spray-painted with sensor nanoparticles. Sensors Actuators B Chem 237:1095–1101.  https://doi.org/10.1016/j.snb.2016.05.147 CrossRefGoogle Scholar
  53. 53.
    Koren K, Brodersen KE, Jakobsen SL, Kühl M (2015) Optical sensor nanoparticles in artificial sediments–a new tool to visualize O2 dynamics around the rhizome and roots of seagrasses. Environ Sci Technol 49:2286–2292.  https://doi.org/10.1021/es505734b CrossRefPubMedGoogle Scholar
  54. 54.
    Brodersen KE, Koren K, Lichtenberg M, Kühl M (2016) Nanoparticle-based measurements of pH and O2 dynamics in the rhizosphere of Zostera marina L.: effects of temperature elevation and light-dark transitions. Plant Cell Environ 39:1619–1630.  https://doi.org/10.1111/pce.12740 CrossRefGoogle Scholar
  55. 55.
    Murniati E, Gross D, Herlina H, Hancke K, Glud RN, Lorke A (2016) Oxygen imaging at the sediment-water interface using lifetime-based laser induced fluorescence (τLIF) of nano-sized particles. Limnol Oceanogr Methods 14:506–517.  https://doi.org/10.1002/lom3.10108 CrossRefGoogle Scholar
  56. 56.
    Glud RN, Grossart HP, Larsen M, Tang KW, Arendt KE, Rysgaard S, Thamdrup B, Gissel Nielsen T (2015) Copepod carcasses as microbial hot spots for pelagic denitrification. Limnol Oceanogr 60:2026–2036.  https://doi.org/10.1002/lno.10149 CrossRefGoogle Scholar
  57. 57.
    Ehgartner J, Wiltsche H, Borisov SM, Mayr T (2014) Low cost referenced luminescent imaging of oxygen and pH with a 2-CCD colour near infrared camera. Analyst 139:4924–4933.  https://doi.org/10.1039/C4AN00783B CrossRefPubMedGoogle Scholar
  58. 58.
    Koren K, Kühl M (2015) A simple laminated paper-based sensor for temperature sensing and imaging. Sensors Actuators B Chem 210:124–128.  https://doi.org/10.1016/j.snb.2014.12.102 CrossRefGoogle Scholar
  59. 59.
    Holst G, Kohls O, Klimant I, König B, Kühl M, Richter T (1998) A modular luminescence lifetime imaging system for mapping oxygen distribution in biological samples. Sensors Actuators B 51:163–170CrossRefGoogle Scholar
  60. 60.
    Holst G, Grunwald B (2001) Luminescence lifetime imaging with transparent oxygen optodes. Sensors Actuators B 74:78–90.  https://doi.org/10.1016/S0925-4005(00)00715-2 CrossRefGoogle Scholar
  61. 61.
    Quaranta M, Borisov SM, Klimant I (2012) Indicators for optical oxygen sensors. Bioanal Rev 4:115–157.  https://doi.org/10.1007/s12566-012-0032-y CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Zhang G, Palmer GM, Dewhirst MW, Fraser CL (2009) A dual-emissive-materials design concept enables tumour hypoxia imaging. Nat Mater 8:747–751.  https://doi.org/10.1038/nmat2509 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Zhang G, Chen J, Payne SJ, Kooi SE, Demas JN, Fraser CL (2007) Multi-emissive difluoroboron dibenzoylmethane polylactide exhibiting intense fluorescence and oxygen-sensitive room-temperature phosphorescence. J Am Chem Soc 129:8942–8943.  https://doi.org/10.1021/ja0720255 CrossRefPubMedGoogle Scholar
  64. 64.
    Yoshihara T, Yamaguchi Y, Hosaka M, Takeuchi T, Tobita S (2012) Ratiometric molecular sensor for monitoring oxygen levels in living cells. Angew Chemie - Int Ed 51:4148–4151.  https://doi.org/10.1002/anie.201107557 CrossRefGoogle Scholar
  65. 65.
    Xiang H, Zhou L, Feng Y, Cheng J, Wu D, Zhou X (2012) Tunable fluorescent/phosphorescent platinum(II) porphyrin-fluorene copolymers for ratiometric dual emissive oxygen sensing. Inorg Chem 51:5208–5212.  https://doi.org/10.1021/ic300040n CrossRefPubMedGoogle Scholar
  66. 66.
    Khalil GE, Coston C, Crafton J et al (2004) Dual-luminophor pressure-sensitive paint I Ratio of reference to sensor giving a small temperature dependency. Sensors Actuators B 97:13–21.  https://doi.org/10.1016/S0925-4005(03)00484-2 CrossRefGoogle Scholar
  67. 67.
    Trampe E, Koren K, Akkineni AR, Senwitz C, Krujatz F, Lode A, Gelinsky M, Kühl M (2018) Functionalized bioink with optical sensor nanoparticles for O2 imaging in 3D-bioprinted constructs. Adv Funct Mater 1804411:1804411.  https://doi.org/10.1002/adfm.201804411 CrossRefGoogle Scholar
  68. 68.
    Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd ed. Springer USGoogle Scholar
  69. 69.
    Valeur B (2001) Molecular fluorescence: principles and applications. Wiley-VCHGoogle Scholar
  70. 70.
    Carraway ER, Demas JN, DeGraff BA, Bacon JR (1991) Photophysics and photochemistry of oxygen sensors based on luminescent transition-metal complexes. Anal Chem 63:337–342CrossRefGoogle Scholar
  71. 71.
    Demas JN, De Graff BA, Xu W (1995) Modeling of luminescence quenching-based sensors: comparison of multisite and nonlinear gas solubility models. Anal Chem 67:1377–1380.  https://doi.org/10.1021/ac00104a012 CrossRefGoogle Scholar
  72. 72.
    Ballew RM, Demas JN (1989) Error analysis of the rapid lifetime determination method for the evaluation of single exponential decays. Analytical 61:30–33.  https://doi.org/10.1016/S0003-2670(00)80210-X CrossRefGoogle Scholar
  73. 73.
    Schreml S, Meier RJ, Wolfbeis OS, Landthaler M, Szeimies RM, Babilas P (2011) 2D luminescence imaging of pH in vivo. Proc Natl Acad Sci U S A 108:2432–2437.  https://doi.org/10.1073/pnas.1006945108 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Becker W (2012) Fluorescence lifetime imaging - techniques and applications. J Microsc 247:119–136.  https://doi.org/10.1111/j.1365-2818.2012.03618.x CrossRefPubMedGoogle Scholar
  75. 75.
    Kennedy GT, Elson DS, Hares JD, Munro I, Poher V, French PMW, Neil MAA (2008) Fluorescence lifetime imaging using light emitting diodes. J Phys D Appl Phys 41(6):094012.  https://doi.org/10.1117/12.701088 CrossRefGoogle Scholar
  76. 76.
    Franke R, Holst GA (2015) Frequency-domain fluorescence lifetime imaging system (pco.flim) based on a in-pixel dual tap control CMOS image sensor. In: Farkas DL, Nicolau D V., Leif RC (eds) Proceedings of SPIE 93281, Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XIII. San Francisco, pp 1–19Google Scholar
  77. 77.
    Stich MIJ, Fischer LH, Wolfbeis OS (2010) Multiple fluorescent chemical sensing and imaging. Chem Soc Rev 39:3102–3114.  https://doi.org/10.1039/b909635n CrossRefPubMedGoogle Scholar
  78. 78.
    Larsen M, Santner J, Oburger E, Wenzel WW, Glud RN (2015) O2 dynamics in the rhizosphere of young rice plants (Oryza sativa L.) as studied by planar optodes. Plant Soil 390:279–292.  https://doi.org/10.1007/s11104-015-2382-z CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Borisov SM, Klimant I (2009) Luminescent nanobeads for optical sensing and imaging of dissolved oxygen. Microchim Acta 164:7–15.  https://doi.org/10.1007/s00604-008-0047-9 CrossRefGoogle Scholar
  80. 80.
    Liebsch G, Klimant I, Krause C, Wolfbeis OS (2001) Fluorescent imaging of pH with optical sensors using time domain dual lifetime referencing. Anal Chem 73:4354–4363.  https://doi.org/10.1021/ac0100852 CrossRefPubMedGoogle Scholar
  81. 81.
    Staal M, Borisov SM, Rickelt LF, Klimant I, Kühl M (2011) Ultrabright planar optodes for luminescence life-time based microscopic imaging of O2 dynamics in biofilms. J Microbiol Methods 85:67–74CrossRefGoogle Scholar
  82. 82.
    Becker W, Shcheslavskiy V (2017) Simultaneous phosphorescence and fluorescence lifetime imaging by multi-dimensional TCSPC and multi-pulse excitation. In: Dimitriev R (ed) Multi-parametric live cell microscopy of 3D tissue models. Advances in experimental medicine and biology. Springer, pp 19–31Google Scholar
  83. 83.
    Suhling K, Hirvonen LM, Levitt JA, Chung PH, Tregidgo C, le Marois A, Rusakov DA, Zheng K, Ameer-Beg S, Poland S, Coelho S, Henderson R, Krstajic N (2015) Fluorescence lifetime imaging (FLIM): basic concepts and some recent developments. Med Photonics 27:3–40.  https://doi.org/10.1016/j.medpho.2014.12.001 CrossRefGoogle Scholar
  84. 84.
    Chen H, Holst G, Gratton E (2015) Modulated CMOS camera for fluorescence lifetime microscopy. Microsc Res Tech 78:1075–1081.  https://doi.org/10.1002/jemt.22587 CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Chen H, Gratton E (2013) A practical implementation of multifrequency widefield frequency-domain fluorescence lifetime imaging microscopy. Microsc Res Tech 76:282–289.  https://doi.org/10.1002/jemt.22165 CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Booth MJ, Wilson T (2004) Low-cost, frequency-domain, fluorescence lifetime confocal microscopy. J Microsc 214:36–42.  https://doi.org/10.1111/j.0022-2720.2004.01316.x CrossRefPubMedGoogle Scholar
  87. 87.
    Mistlberger G, Chojnacki P, Klimant I (2008) Magnetic sensor particles: an optimized magnetic separator with an optical window. J Phys D Appl Phys 41:085003.  https://doi.org/10.1088/0022-3727/41/8/085003 CrossRefGoogle Scholar
  88. 88.
    Mistlberger G, Koren K, Scheucher E, Aigner D, Borisov SM, Zankel A, Pölt P, Klimant I (2010) Multifunctional magnetic optical sensor particles with tunable sizes for monitoring metabolic parameters and as a basis for Nanotherapeutics. Adv Funct Mater 20:1842–1851.  https://doi.org/10.1002/adfm.201000321 CrossRefGoogle Scholar
  89. 89.
    Chojnacki P, Mistlberger G, Klimant I (2007) Separable magnetic sensors for the optical determination of oxygen. Angew Chemie - Int Ed 46:8850–8853.  https://doi.org/10.1002/anie.200702068 CrossRefGoogle Scholar
  90. 90.
    Wolfbeis OS (2015) An overview of nanoparticles commonly used in fluorescent bioimaging. Chem Soc Rev 44:4743–4768.  https://doi.org/10.1039/c4cs00392f CrossRefPubMedGoogle Scholar
  91. 91.
    Lee Y-EK, Kopelman R (2012) Nanoparticle PEBBLE sensors in live cells. Methods in Enzymology. Elsevier Inc., In, pp 419–470Google Scholar
  92. 92.
    Cao Y, Koo YL, Kopelman R (2004) Poly(decyl methacrylate)-based fluorescent PEBBLE swarm nanosensors for measuring dissolved oxygen in biosamples. Analyst 129:745–750CrossRefGoogle Scholar
  93. 93.
    Clark HA, Hoyer M, Parus S, Philbert MA, Kopelman R (1999) Optochemical nanosensors and subcellular applications in living cells. Microchim Acta 131:121–128CrossRefGoogle Scholar
  94. 94.
    Borisov SM, Mayr T, Klimant I (2008) Poly(styrene-block-vinylpyrrolidone) beads as a versatile material for simple fabrication of optical nanosensors. Anal Chem 80:573–582.  https://doi.org/10.1021/ac071374e CrossRefPubMedGoogle Scholar
  95. 95.
    Borisov SM, Herrod DL, Klimant I (2009) Fluorescent poly (styrene-block- vinylpyrrolidone) nanobeads for optical sensing of pH. Sensors Actuators B Chem 139:52–58.  https://doi.org/10.1016/j.snb.2008.08.028 CrossRefGoogle Scholar
  96. 96.
    Sun L-N, Yu J, Peng H, Zhang JZ, Shi LY, Wolfbeis OS (2010) Temperature-sensitive luminescent nanoparticles and films based on a terbium(III) complex probe. J Phys Chem C 114:12642–12648CrossRefGoogle Scholar
  97. 97.
    Fischer LH, Borisov SM, Schaeferling M, Klimant I, Wolfbeis OS (2010) Dual sensing of pO2 and temperature using a water-based and sprayable fluorescent paint. Analyst 135:1224–1229.  https://doi.org/10.1039/b927255k CrossRefPubMedGoogle Scholar
  98. 98.
    Brasuel M, Kopelman R, Miller TJ, Tjalkens R, Philbert MA (2001) Fluorescent nanosensors for intracellular chemical analysis: Decyl methacrylate liquid polymer matrix and ion-exchange-based potassium PEBBLE sensors with real-time application to viable rat C6 glioma cells. Anal Chem 73:2221–2228.  https://doi.org/10.1021/ac0012041 CrossRefPubMedGoogle Scholar
  99. 99.
    Müller BJ, Borisov SM, Klimant I (2016) Red- to NIR-emitting, BODIPY-based, K+-selective Fluoroionophores and sensing materials. Adv Funct Mater 26:7697–7707.  https://doi.org/10.1002/adfm.201603822 CrossRefGoogle Scholar
  100. 100.
    Müller BJ, Zhdanov AV, Borisov SM, Foley T, Okkelman IA, Tsytsarev V, Tang Q, Erzurumlu RS, Chen Y, Zhang H, Toncelli C, Klimant I, Papkovsky DB, Dmitriev RI (2018) Nanoparticle-based Fluoroionophore for analysis of potassium ion dynamics in 3D tissue models and in vivo. Adv Funct Mater 28:1–12.  https://doi.org/10.1002/adfm.201704598 CrossRefGoogle Scholar
  101. 101.
    Koo YEL, Cao Y, Kopelman R, Koo SM, Brasuel M, Philbert MA (2004) Real-time measurements of dissolved oxygen inside live cells by organically modified silicate fluorescent nanosensors. Anal Chem 76:2498–2505.  https://doi.org/10.1021/ac035493f CrossRefPubMedGoogle Scholar
  102. 102.
    Sumner JP, Westerberg NM, Stoddard AK, Fierke CA, Kopelman R (2006) Cu+ − and Cu2+ −sensitive PEBBLE fluorescent nanosensors using DsRed as the recognition element. Sensors Actuators B 113:760–767.  https://doi.org/10.1016/j.snb.2005.07.028 CrossRefGoogle Scholar
  103. 103.
    Xu H, Aylott JW, Kopelman R, Miller TJ, Philbert MA (2001) A real-time ratiometric method for the determination of molecular oxygen inside living cells using sol-gel-based spherical optical nanosensors with applications to rat C6 glioma. Anal Chem 73:4124–4133.  https://doi.org/10.1021/ac0102718 CrossRefPubMedGoogle Scholar
  104. 104.
    Borisov SM, Mayr T, Mistlberger G, Waich K, Koren K, Chojnacki P, Klimant I (2009) Precipitation as a simple and versatile method for preparation of optical nanochemosensors. Talanta 79:1322–1330.  https://doi.org/10.1016/j.talanta.2009.05.041 CrossRefPubMedGoogle Scholar
  105. 105.
    Kürner JM, Klimant I, Krause C, Preu H, Kunz W, Wolfbeis OS (2001) Inert phosphorescent nanospheres as markers for optical assays. Bioconjug Chem 12:883–889.  https://doi.org/10.1021/bc000130x CrossRefPubMedGoogle Scholar
  106. 106.
    Rempel GL, Wang H (2015) Microemulsion polymerization. In: Kobayashi S, Müllen K (eds) Encyclopedia of polymeric nanomaterials. Heidelberg, Berlin, pp 1241–1250CrossRefGoogle Scholar
  107. 107.
    Mistlberger G, Medina-Castillo AL, Borisov SM, Mayr T, Fernández-Gutiérrez A, Fernandez-Sanchez JF, Klimant I (2011) Mini-emulsion solvent evaporation: a simple and versatile way to magnetic nanosensors. Microchim Acta 172:299–308.  https://doi.org/10.1007/s00604-010-0492-0 CrossRefGoogle Scholar
  108. 108.
    Bonham JA, Faers MA, van Duijneveldt JS (2014) Non-aqueous microgel particles: synthesis, properties and applications. Soft Matter 10:9384–9398.  https://doi.org/10.1039/C4SM01834F CrossRefPubMedGoogle Scholar
  109. 109.
    Desgouilles S, Vauthier C, Bazile D, Vacus J, Grossiord JL, Veillard M, Couvreur P (2003) The Design of Nanoparticles Obtained by solvent evaporation: a comprehensive study. Langmuir 19:9504–9510.  https://doi.org/10.1021/la034999q CrossRefGoogle Scholar
  110. 110.
    Teodorescu M, Bercea M (2015) Poly(vinylpyrrolidone) – a versatile polymer for biomedical and beyond medical applications. Polym - Plast Technol Eng 54:923–943.  https://doi.org/10.1080/03602559.2014.979506 CrossRefGoogle Scholar
  111. 111.
    Lin J, Brown CW (1997) Sol-gel glass as a matrix for chemical and biochemical sensing. Trends Anal Chem 16:200–211CrossRefGoogle Scholar
  112. 112.
    Innocenzi P (2016) From the precursor to a sol. In: The Sol to Gel Transition, SpringerBr Springer, Alghero, pp 7–25Google Scholar
  113. 113.
    Riccò R, Nizzero S, Penna E, Meneghello A, Cretaio E, Enrichi F (2018) Ultra-small dye-doped silica nanoparticles via modified sol-gel technique. J Nanopart Res 20:1–9.  https://doi.org/10.1007/s11051-018-4227-1 CrossRefGoogle Scholar
  114. 114.
    Geddes CD, Lakowics JR (2002) Topics in fluorescence spectroscopy. Volume 10. Advanced Concepts in Fluorescence Spectroscopy - Part B: Macromolecular Sensing. SpringerGoogle Scholar
  115. 115.
    Uhlmann DR, Teowee G, Boulton J (1997) The future of sol-gel science and technology. J Sol-Gel Sci Technol 8:1083–1091.  https://doi.org/10.1007/BF02436988 CrossRefGoogle Scholar
  116. 116.
    Sakka S (1989) Formation of particles in sol-gel process. KONA 7:106–118CrossRefGoogle Scholar
  117. 117.
    Mistlberger G, Borisov SM, Klimant I (2009) Enhancing performance in optical sensing with magnetic nanoparticles. Sensors Actuators B Chem 139:174–180.  https://doi.org/10.1016/j.snb.2008.11.008 CrossRefGoogle Scholar
  118. 118.
    Koren K, Mistlberger G, Aigner D, Borisov SM, Zankel A, Pölt P, Klimant I (2010) Characterization of micrometer-sized magnetic optical sensor particles produced via spray-drying. Monatsh Chem 141:691–697.  https://doi.org/10.1007/s00706-010-0262-z CrossRefGoogle Scholar
  119. 119.
    Sønderholm M, Koren K, Wangpraseurt D, Jensen PØ, Kolpen M, Kragh KN, Bjarnsholt T, Kühl M (2018) Tools for studying growth patterns and chemical dynamics of aggregated Pseudomonas aeruginosa exposed to different electron acceptors in an alginate bead model. NPJ Biofilms Microbiomes 3:1–11.  https://doi.org/10.1038/s41522-018-0047-4 CrossRefGoogle Scholar
  120. 120.
    Meysman FJR, Galaktionov OS, Glud RN, Middelburg JJ (2010) Oxygen penetration around burrows and roots in aquatic sediments. J Mar Res 68:309–336.  https://doi.org/10.1357/002224010793721406 CrossRefGoogle Scholar
  121. 121.
    Salih A, Larkum A, Cox G, Kühl M, Hoegh-Guldberg O (2000) Fluorescent pigments in corals are photoprotective. Nature 408:850–853.  https://doi.org/10.1038/35048564 CrossRefPubMedGoogle Scholar
  122. 122.
    Beer S, Vilenkin B, Weil A, Veste M, Susel L, Eshel A (1998) Measuring photosynthetic rates in seagrasses by pulse amplitude modulated (PAM) fluorometry. Mar Ecol Prog Ser 174:293–300.  https://doi.org/10.3354/meps174293 CrossRefGoogle Scholar
  123. 123.
    Brodersen KE, Nielsen DA, Ralph PJ, Kühl M (2015) Oxic microshield and local pH enhancement protects Zostera muelleri from sediment derived hydrogen sulphide. New Phytol 205:1264–1276.  https://doi.org/10.1111/nph.13124 CrossRefPubMedGoogle Scholar
  124. 124.
    Brodersen KE, Hammer KJ, Schrameyer V, Floytrup A, Rasheed MA, Ralph PJ, Kühl M, Pedersen O (2017) Sediment resuspension and deposition on seagrass leaves impedes internal plant aeration and promotes phytotoxic H2S intrusion. Front Plant Sci 8.  https://doi.org/10.3389/fpls.2017.00657
  125. 125.
    Pedersen O, Binzer T, Borum J (2004) Sulphide intrusion in eelgrass (Zostera marina L .). Plant Cell Environ 27:595–602CrossRefGoogle Scholar
  126. 126.
    Brodersen KE, Siboni N, Nielsen DA, Pernice M, Ralph PJ, Seymour J, Kühl M (2018) Seagrass rhizosphere microenvironment alters plant-associated microbial community composition. Environ Microbiol 20:2854–2864.  https://doi.org/10.1111/1462-2920.14245 CrossRefPubMedGoogle Scholar
  127. 127.
    Schreiber U (2004) Pule-amplitude-modulation (PAM) Fluorometry and saturation pulse method: an overview. In: Papageorgiou GC, Govindjee (eds) chlorophyll a fluorescence: a signature of photosynthesis. Springer, Dordrecht, pp 279–319CrossRefGoogle Scholar
  128. 128.
    Mohr GJ, Werner T, Wolfbeis OS (1995) Application of a novel Lipophilized fluorescent dye in an optical nitrate sensor. J Fluoresc 5:135–138.  https://doi.org/10.1007/BF00727530 CrossRefPubMedGoogle Scholar
  129. 129.
    Baleiz̃a C, Nagl S, Schäferling M et al (2008) Dual fluorescence sensor for trace oxygen and temperature with unmatched range and sensitivity. Anal Chem 80:6449–6457.  https://doi.org/10.1021/ac801034p CrossRefGoogle Scholar
  130. 130.
    Borisov SM, Vasylevska AS, Krause C, Wolfbeis OS (2006) Composite luminescent material for dual sensing of oxygen and temperature. Adv Funct Mater 16:1536–1542.  https://doi.org/10.1002/adfm.200500778 CrossRefGoogle Scholar
  131. 131.
    Wang XD, Song XH, He CY, Yang CJ, Chen G, Chen X (2011) Preparation of reversible colorimetric temperature nanosensors and their application in quantitative two-dimensional thermo-imaging. Anal Chem 83:2434–2437.  https://doi.org/10.1021/ac200196y CrossRefPubMedGoogle Scholar
  132. 132.
    Schuler LJ, Hoang TC, Rand GM (2008) Aquatic risk assessment of copper in freshwater and saltwater ecosystems of South Florida. Ecotoxicology 17:642–659.  https://doi.org/10.1007/s10646-008-0236-7 CrossRefPubMedGoogle Scholar
  133. 133.
    Alzieu C, CLaidde D (1993) Copper contamination as a result of antifouling paint regulations? Mar Pollut Bull 26:395–397CrossRefGoogle Scholar
  134. 134.
    Victor S, Richmond RH (2005) Effect of copper on fertilization success in the reef coral Acropora surculosa. Mar Pollut Bull 50:1433–1456.  https://doi.org/10.1016/j.marpolbul.2005.09.004 CrossRefGoogle Scholar
  135. 135.
    Stauber JL, Andrade S, Ramirez M, Adams M, Correa JA (2005) Copper bioavailability in a coastal environment of northern Chile: comparison of bioassay and analytical speciation approaches. Mar Pollut Bull 50:1363–1372.  https://doi.org/10.1016/j.marpolbul.2005.05.008 CrossRefPubMedGoogle Scholar
  136. 136.
    Hirose K (1990) Chemical speciation of trace metals in seawater: implication of particulate trace metals. Mar Chem 28:267–274CrossRefGoogle Scholar
  137. 137.
    Neff JM (2002) Zinc in the ocean. In: Bioaccumulation in marine organisms - effect of contaminants from oil well produced water, 1st edn. Elsevier Ltd, Amsterdam, pp 175–189CrossRefGoogle Scholar
  138. 138.
    Neff JM (2002) Copper in the ocean. In: Bioaccumulation in marine organisms - effect of contaminants from oil well produced water, 1st edn. Elsevier Ltd, Amsterdam, pp 145–160CrossRefGoogle Scholar
  139. 139.
    Shen W, Li Y, Qi T et al (2018) Fluorometric determination of zinc(II) by using DNAzyme-modified magnetic microbeads. Microchim Acta 185:1–8CrossRefGoogle Scholar
  140. 140.
    Wang J, Yu J, Wang X et al (2018) Functional ZnS:Mn(II) quantum dot modified with L-cysteine and 6-mercaptonicotinic acid as a fluorometric probe for copper(II). Microchim Acta 185:1–13CrossRefGoogle Scholar
  141. 141.
    Marshall AT, Clode PL (2002) Effect of increased calcium concentration in sea water on calcification and photosynthesis in the scleractinian coral Galaxea fascicularis. J Exp Biol 205:2107–2113PubMedGoogle Scholar
  142. 142.
    Potasznik A, Szymczyk S (2015) Magnesium and calcium concentrations in the surface water and bottom deposits of a river-lake system. J Elem 20:677–692.  https://doi.org/10.5601/jelem.2015.20.1.788 CrossRefGoogle Scholar
  143. 143.
    Morr S, Cuartas E, Alwattar B, Lane JM (2006) How much calcium is in your drinking water ? A survey of calcium concentrations in bottled and tap water and their significance for medical treatment and drug administration. Musculoskelet J Hosp Spec Surg 2:130–135.  https://doi.org/10.1007/s11420-006-9000-9 CrossRefGoogle Scholar
  144. 144.
    Talling JF (2010) Potassium – a non-limiting nutrient in fresh waters ? Fr Rev 3:97–104.  https://doi.org/10.1608/FRJ-3.2.1 CrossRefGoogle Scholar
  145. 145.
    Christensen EAF, Illing B, Iversen NS, Johansen JL, Domenici P, Steffensen JF (2018) Effects of salinity on swimming performance and oxygen consumption rate of shiner perch Cymatogaster aggregata. J Exp Mar Bio Ecol 504:32–37.  https://doi.org/10.1016/j.jembe.2018.04.002 CrossRefGoogle Scholar
  146. 146.
    Brasuel MG, Miller TJ, Kopelman R, Philbert MA (2003) Liquid polymer nano-PEBBLEs for cl- analysis and biological applications. Analyst 128:1262–1267.  https://doi.org/10.1039/b305254k CrossRefPubMedGoogle Scholar
  147. 147.
    Sumner JP, Aylott JW, Monson E, Kopelman R (2002) A fluorescent PEBBLE nanosensor for intracellular free zinc. Analyst 127:11–16.  https://doi.org/10.1039/b108568a CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Marine Biological Section, Department of BiologyUniversity of CopenhagenHelsingørDenmark
  2. 2.Climate Change ClusterUniversity of Technology SydneyUltimoAustralia
  3. 3.Aarhus University Center for Water Technology, Department of Bioscience – MicrobiologyAarhus UniversityAarhusDenmark

Personalised recommendations