Microchimica Acta

, 186:47 | Cite as

Light enhanced room temperature resistive NO2 sensor based on a gold-loaded organic–inorganic hybrid perovskite incorporating tin dioxide

  • Yilu Chen
  • Xinyu Zhang
  • Zhifu Liu
  • Zhigang Zeng
  • Hongbin Zhao
  • Xiaohong WangEmail author
  • Jiaqiang XuEmail author
Original Paper


A material is described for sensing NO2 in the gas phase. It has an architecture of type Au/MASnI3/SnO2 (where MA stands for methylammonium cation) and was fabricated by first synthesizing Au/MASnI3 and then crystallizing SnO2 on the surface by calcination. The physical and NO2 sensing properties of the composite were examined at room temperature without and with UV (365 nm) illumination, and the NO2-sensing mechanism was studied. The characterization demonstrated the formation of a p-n heterojunction structure between p-MASnI3 and n-SnO2. The sensor, best operated at a voltage of 1.1 V at room temperature, displays superior NO2 sensing performance. Figures of merit include (a) high response (Rg/Ra = 240 for 5 ppm NO2; where Rg stands for the resistance of a sensor in test gas, and Ra stands for the resistance of a sensor in air), (b) fast recovery (about 12 s), (c) excellent selectivity compared to sensors based on the use of SnO2 or Au/SnO2 only, both at room temperature under UV illumination; (d) a low detection limit (55 ppb), and (e) a linear response between 0.5 and 10 ppm of NO2. The enhanced sensing performance is mainly attributed to the high light absorption capacity of MASnI3, the easy generation and transfer of photo-induced electrons from MASnI3 to the conduction band of SnO2, and the catalytic effect of gold nanoparticles.

Graphical abstract

Schematic of the energy band diagrams of the gold-functionalized MASnI3/SnO2 system after equilibrium with UV illumination, by which the enhanced sensing performance for NO2 can be explained.


UV light Light absorbing material MASnI3 SnO2 P-n junction SPR effect Gas sensing Heterojunction Photo generated electrons Catalytic effect 



This research was supported by the Opening Project of Key Laboratory of Inorganic Functional Materials and Devices, Chinese Academy of Sciences (KLIFMD201704), National Natural Science Foundation of China (61671284; U1704255), National Key Research and Development Program of China (2017YFB0102900), Shanghai Pujiang Program (17PJD016) and the Shanghai Municipal Education Commission (Peak Discipline Construction program). We also acknowledge the Instrumental Analysis and Research Center of Shanghai University for providing measurement services.

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2018_3155_MOESM1_ESM.docx (3.6 mb)
ESM 1 (DOCX 3697 kb)


  1. 1.
    Cho NG, Yang DJ, Jin M-J, Kim H-G, Tuller HL, Kim I-D (2011) Highly sensitive SnO2 hollow nanofiber-based NO2 gas sensors. Sensors Actuators B Chem 160:1468–1472. CrossRefGoogle Scholar
  2. 2.
    Khuspe GD, Sakhare RD, Navale ST, Chougule MA, Kolekar YD, Mulik RN, Pawar RC, Lee CS, Patil VB (2013) Nanostructured SnO2 thin films for NO2 gas sensing applications. Ceram Int 39(8):8673–8679. CrossRefGoogle Scholar
  3. 3.
    Joshi N, Hayasaka T, Liu Y, Liu H, Oliveira ON Jr, Lin L (2018) A review on chemiresistive room temperature gas sensors based on metal oxide nanostructures, graphene and 2D transition metal dichalcogenides. Microchim Acta 185(4):213. CrossRefGoogle Scholar
  4. 4.
    Comini E, Faglia G, Sberveglieri G (2001) UV light activation of tin oxide thin films for NO2 sensing at low temperatures. Sensors Actuators B Chem 78(1–3):73–77. CrossRefGoogle Scholar
  5. 5.
    Lu GY, Xu J, Sun JB, Yu YS, Zhang YQ, Liu FM (2012) UV-enhanced room temperature NO2 sensor using ZnO nanorods modified with SnO2 nanoparticles. Sensors Actuators B Chem 162(1):82–88. CrossRefGoogle Scholar
  6. 6.
    Park S, An S, Mun Y, Lee C (2013) UV-enhanced NO2 gas sensing properties of SnO2-Core/ZnO-Shell nanowires at room temperature. ACS Appl Mater Interfaces 5(10):4285–4292. CrossRefPubMedGoogle Scholar
  7. 7.
    Wagner T, Kohl C-D, Malagu C, Donato N, Latino M, Neri G, Tiemann M (2013) UV light-enhanced NO2 sensing by mesoporous In2O3: interpretation of results by a new sensing model. Sensors Actuators B Chem 187:488–494. CrossRefGoogle Scholar
  8. 8.
    Sabri YM, Kandjani AE, Rashid SSAAH, Harrison CJ, Ippolito SJ, Bhargava SK (2018) Soot template TiO2 fractals as a photoactive gas sensor for acetone detection. Sensors Actuators B Chem 275:215–222. CrossRefGoogle Scholar
  9. 9.
    Han L, Wang D, Lu Y, Jiang T, Liu B, Lin Y (2011) Visible-light-assisted HCHO gas sensing based on Fe-doped flowerlike ZnO at room temperature. J Phys Chem C 115(46):22939–22944. CrossRefGoogle Scholar
  10. 10.
    Correa-Baena J-P, Abate A, Saliba M, Tress W, Jacobsson TJ, Gratzel M, Hagfeldt A (2017) The rapid evolution of highly efficient perovskite solar cells. Energy Environ Sci 10(3):710–727. CrossRefGoogle Scholar
  11. 11.
    Hao F, Stoumpos CC, Duyen Hanh C, Chang RPH, Kanatzidis MG (2014) Lead-free solid-state organic-inorganic halide perovskite solar cells. Nat Photonics 8(6):489–494. CrossRefGoogle Scholar
  12. 12.
    Babayigit A, Ethirajan A, Muller M, Conings B (2016) Toxicity of organometal halide perovskite solar cells. Nat Mater 15(3):247–251. CrossRefPubMedGoogle Scholar
  13. 13.
    Wang H, Yan Y, Li K, Du X, Lan Z, Jin H (2010) Role of intrinsic defects in ferromagnetism of SnO2: first-principles calculations. Phys Status Solidi B Basic Solid State Phys 247(2):444–448. CrossRefGoogle Scholar
  14. 14.
    Etgar L, Gao P, Xue Z, Peng Q, Chandiran AK, Liu B, Nazeeruddin MK, Graetzel M (2012) Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J Am Chem Soc 134(42):17396–17399. CrossRefPubMedGoogle Scholar
  15. 15.
    Stoumpos CC, Malliakas CD, Kanatzidis MG (2013) Semiconducting tin and Lead iodide perovskites with organic cations: phase transitions, high Mobilities, and near-infrared Photoluminescent properties. Inorg Chem 52(15):9019–9038. CrossRefPubMedGoogle Scholar
  16. 16.
    Xu J, Xue Z, Qin N, Cheng Z, Xiang Q (2017) The crystal facet-dependent gas sensing properties of ZnO nanosheets: experimental and computational study. Sensors Actuators B Chem 242:148–157. CrossRefGoogle Scholar
  17. 17.
    Zhang C, Peng X, Guo Z, Cai C, Chen Z, Wexler D, Li S, Liu H (2012) Carbon-coated SnO2/graphene nanosheets as highly reversible anode materials for lithium ion batteries. Carbon 50(5):1897–1903. CrossRefGoogle Scholar
  18. 18.
    Choi JJ, Yang X, Norman ZM, Billinge SJL, Owen JS (2014) Structure of Methylammonium Lead iodide within mesoporous titanium dioxide: active material in high-performance perovskite solar cells. Nano Lett 14(1):127–133. CrossRefPubMedGoogle Scholar
  19. 19.
    Yin Z, Chen B, Bosman M, Cao X, Chen J, Zheng B, Zhang H (2014) Au nanoparticle-modified MoS2 Nanosheet-based Photoelectrochemical cells for water splitting. Small 10(17):3537–3543. CrossRefPubMedGoogle Scholar
  20. 20.
    Lupan O, Koussi-Daoud S, Viana B, Pauporte T (2016) Oxide planar p-n heterojunction prepared by low temperature solution growth for UV-photodetector applications. RSC Adv 6(72):68254–68260. CrossRefGoogle Scholar
  21. 21.
    Nguyen Minh V, Nguyen Duc C, Bui The H, Lee Y-I (2016) CuO-Decorated ZnO Hierarchical Nanostructures as Efficient and Established Sensing Materials for H2S Gas Sensors. Scientific Reports 6.
  22. 22.
    Prades JD, Jimenez-Diaz R, Hernandez-Ramirez F, Barth S, Cirera A, Romano-Rodriguez A, Mathur S, Morante JR (2009) Equivalence between thermal and room temperature UV light-modulated responses of gas sensors based on individual SnO2 nanowires. Sensors Actuators B Chem 140(2):337–341. CrossRefGoogle Scholar
  23. 23.
    Vlachos DS, Avaritsiotis JN, Skafidas PD (1995) The effect of humidity on tin-oxide thick-film gas sensors in the presence of reducing and combustible gases. Sensors Actuators B Chem 24-25:491–494. CrossRefGoogle Scholar
  24. 24.
    Yeh YC, Tseng TY (1989) Analysis of the d.c. and a.c. properties of K2O-doped porous Ba0.5Sr0.5TiO3 ceramic humidity sensor. J Mater Sci 24:2739–2745. CrossRefGoogle Scholar
  25. 25.
    Wang ZY, Zhang Y, Liu S, Zhang T (2016) Preparation of ag nanoparticles-SnO2 nanoparticles-reduced graphene oxide hybrids and their application for detection of NO2 at room temperature. Sensors Actuators B Chem 222:893–903. CrossRefGoogle Scholar
  26. 26.
    Korotcenkov G, Brinzari V, Cho BK (2016) Conductometric gas sensors based on metal oxides modified with gold nanoparticles: a review. Microchim Acta 183(3):1033–1054. CrossRefGoogle Scholar
  27. 27.
    Zhao W-W, Tian C-Y, Xu J-J, Chen H-Y (2012) The coupling of localized surface plasmon resonance-based photoelectrochemistry and nanoparticle size effect: towards novel plasmonic photoelectrochemical biosensing. ChemComm 48:895–897. CrossRefGoogle Scholar
  28. 28.
    Su R, Tiruvalam R, Logsdail AJ, He Q, Downing CA, Jensen MT, Dimitratos N, Kesavan L, Wells PP, Bechstein R, Jensen HH, Wendt S, Catlow CRA, Kiely CJ, Hutchings GJ, Besenbacher* F (2014) Designer Titania-supported au-Pd nanoparticles for efficient photocatalytic hydrogen production. ACS Nano 8(4):3490–3497. CrossRefPubMedGoogle Scholar
  29. 29.
    Fan S-W, Srivastava AK, Dravid VP (2009) UV-activated room-temperature gas sensing mechanism of polycrystalline ZnO. Appl Phys Lett 95(14):142106. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.NEST Lab, Department of Chemistry, Department of Physics, College of ScienceShanghai UniversityShanghaiChina
  2. 2.CAS Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of CeramicsChinese Academy of SciencesShanghaiChina

Personalised recommendations