Microchimica Acta

, 186:33 | Cite as

A glassy carbon electrode modified with TiO2(200)-rGO hybrid nanosheets for aptamer based impedimetric determination of the prostate specific antigen

  • Masoud KarimipourEmail author
  • Esmaeil Heydari-BafrooeiEmail author
  • Mahjubeh Sanjari
  • Malin B. Johansson
  • Mehdi Molaei
Original Paper


TiO2(200)-rGO hybrid nanosheets were synthesized starting from TiO2, rGO and NaOH solid powders via a scalable hydrothermal process. The weight ratio of TiO2-GO was found to be crucial on the crystal growth and biosensor properties of the final hybrid nanosheets. They were characterized by means of SEM, FESEM-EDX, XRD, XPS, Raman and FTIR spectroscopies in order to verify the formation of very thin TiO2 anatase nanosheets with an orientation of the anatase crystal structure towards the (200) plane. The free active sites of TiO2 structure and the large surface of the 2D graphene structure strongly facilitate charge transport confirmed by BET-BJH analyses. Compared to pure AuNPs, rGO and TiO2, the hybrid nanosheet modified electrode represents the most sensitive aptasensing platform for the determination of PSA. The detection was based on that the variation of electron transfer resistance (Rct) at the modified electrode surface in a solution containing 3.0 mmol L−1 [Fe(CN)6]3−/4- as a redox probe and 0.1 mol L−1 KCl as supporting electrolyte. The detection limit of the sensor is 1 pg mL−1, and the sensor can be operated up to 30 days. It was applied to the analysis of PSA levels in spiked serum samples obtained from patients with prostate cancer. Data compare well with those obtained by an immunoradiometric assay.

Graphical abstract

Scalable reduced graphene oxide (rGO)-TiO2(200) mesoporous hybrid nanosheets with large surface area and new crystal growth of anatase (A) are introduced as efficient, durable, selective with low detection limit aptamer based prostate specific antigen biosensor.


Work function X-ray photoelectron spectroscopy Effective surface area Aptasensor Electrochemical impedance spectroscopy Voltammetry 


Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2018_3141_MOESM1_ESM.docx (6 mb)
ESM 1 (DOCX 6110 kb)


  1. 1.
    Rodríguez GA, Díaz-García CV, Agudo-López A, Prieto GE, Ponce S, López-Martín JA, Paz-Ares L, Iglesias L, Agulló-Ortuño MT (2016) Blood-based biomarkers for monitoring antiangiogenic therapy in non-small cell lung cancer. Med Oncol 33:105CrossRefGoogle Scholar
  2. 2.
    Hori SS, Lutz AM, Paulmurugan R, Gambhir SS (2017) A model-based personalized cancer screening strategy for detecting early-stage tumors using blood-borne biomarkers. Cancer Res 77:2570–2584CrossRefGoogle Scholar
  3. 3.
    Damborska D, Bertok T, Dosekova E, Holazova A, Lorencova L, Kasak P, Tkac J (2017) Nanomaterial-based biosensors for detection of prostate specific antigen. Microchim Acta 184(9):3049–3067. CrossRefGoogle Scholar
  4. 4.
    Rahi A, Sattarahmady N, Heli H (2016) Label-free electrochemical aptasensing of the human prostate-specific antigen using gold nanospears. Talanta 156-157:218–224. CrossRefPubMedGoogle Scholar
  5. 5.
    Pawan J, Formisano N, Tkac J, Kasák P, Frost CG, Estrela P (2015) Label-free Impedimetric Aptasensor with antifouling surface chemistry: a prostate specific antigen case study. Sensors Actuators B Chem 209:306–312. CrossRefGoogle Scholar
  6. 6.
    Pawan J, Tamboli V, Harniman RL, Estrela P, Allender CJ, Bowen JL (2016) Aptamer-MIP hybrid receptor for highly sensitive electrochemical detection of prostate specific antigen. Biosens Bioelectron 75:188–195. CrossRefGoogle Scholar
  7. 7.
    Kong RM, Ding L, Wang Z, You Qu JF (2015) A novel aptamer-functionalized MoS2 nanosheet fluorescent biosensor for sensitive detection of prostate specific antigen. Anal Bioanal Chem 407:369–377. CrossRefPubMedGoogle Scholar
  8. 8.
    Meirinho SG, Dias LG, Peresd AM, Lígi RR (2016) Voltammetric aptasensors for protein disease biomarkers detection: a review. Biotechnol Adv 34(5):941–953. CrossRefPubMedGoogle Scholar
  9. 9.
    Zhou L, Wang J, Li D, Li Y (2014) An electrochemical aptasensor based on gold nanoparticles dotted graphene modified glassy carbon electrode for label-free detection of bisphenol a in milk samples. Food Chem 162:34–40. CrossRefPubMedGoogle Scholar
  10. 10.
    Liu Y, Liu Y, Liu B (2016) A dual-signaling strategy for ultrasensitive detection of bisphenol a by aptamer-based electrochemical biosensor. J Electroanal Chem 781:265–271. CrossRefGoogle Scholar
  11. 11.
    Zhu Y, Zhou C, Yan X, Yan Y, Wang Q (2015) Aptamer-functionalized nanoporous gold film for high-performance direct electrochemical detection of bisphenol a in human serum. Anal Chim Acta 883:81–89. CrossRefPubMedGoogle Scholar
  12. 12.
    Huang Y, Li X, Zheng S (2016) A novel and label-free immunosensor for bisphenol a using rutin as the redox probe. Talanta 160:241–246. CrossRefPubMedGoogle Scholar
  13. 13.
    Heydari-Bafrooei E, Shamszadeh NS (2017) Electrochemical bioassay development for ultrasensitive aptasensing of prostate specific antigen. Biosens Bioelectron 91:284–292CrossRefGoogle Scholar
  14. 14.
    Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K (1999) Titania nanotubes prepared by chemical processing. Adv Mater 11:1307–1311CrossRefGoogle Scholar
  15. 15.
    Zheye Z, Fei X, Yunlong G, Shuai W, Yunqi L (2013) One-pot self-assembled three-dimensional TiO2-graphene hydrogel with improved adsorption capacities and photocatalytic and electrochemical activities. ACS Appl Mater Interfaces 5(6):2227–2233. CrossRefGoogle Scholar
  16. 16.
    Zakrzewska K (2011) Nonstoichiometry in TiO2−y studied by ion beam methods and photoelectron spectroscopy. Adv Mater Sci Eng 2012:13–13. CrossRefGoogle Scholar
  17. 17.
    Zhang H, Panpan X, Guidong D, Chen Z, Kokyo O, Pan D, Jiao Z (2011) A facile one-step synthesis of TiO2/graphene composites for Photodegradation of methyl Orange. Nano Res 4(3):274–283. CrossRefGoogle Scholar
  18. 18.
    David OS, Charles WD, John B, Stephen AS, Andrew JL, Scott MW, Richard C, AC MJP, Robert GP, Ivan PP, Graeme WW, Thomas WK, Paul S, Aron W, Alexey AS (2013) Band alignment of rutile and Anatase TiO2. Nat Mater 12:798–801. CrossRefGoogle Scholar
  19. 19.
    Amano T, Toyooka T, Ibuki Y (2010) Preparation of DNA-adsorbed TiO2 particles--augmentation of performance for environmental purification by increasing DNA adsorption by external pH regulation. Sci Total Environ 408(3):480–485. CrossRefPubMedGoogle Scholar
  20. 20.
    Xu Y, Wu Q, Sun Y, Bai H, Shi G (2010) Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels. ACS Nano 4(12):7358–7362. CrossRefPubMedGoogle Scholar
  21. 21.
    Wang M, Zhai S, Ye Z, He L, Peng D, Feng X, Yang Y, Fang S, Zhang H, Zhang Z (2015) An electrochemical aptasensor based on a TiO2/three-dimensional reduced graphene oxide/PPy nanocomposite for the sensitive detection of lysozyme. Dalton Trans 44(14):6473–6479. CrossRefPubMedGoogle Scholar
  22. 22.
    Xu Z, Feng W, Liu B, Erin YK, Mark RS, Liu J (2014) Adsorption of DNA oligonucleotides by titanium dioxide nanoparticles. Langmuir 30:839–845. CrossRefGoogle Scholar
  23. 23.
    Zhang G, Liu Z, Fan L, Guo Y (2018) Electrochemical prostate specific antigen aptasensor based on hemin functionalized graphene-conjugated palladium nanocomposites. Microchim Acta 185(3):159. CrossRefGoogle Scholar
  24. 24.
    Kukkar M, Singh S, Kumar N, Tuteja SK, Kim KH, Deep A (2017) Molybdenum disulfide quantum dot based highly sensitive impedimetric immunoassay for prostate specific antigen. Microchim Acta 184(12):4647–4654. CrossRefGoogle Scholar
  25. 25.
    Ma Y, Shen XL, Zeng Q, Wang LS (2017) A glassy carbon electrode modified with graphene nanoplatelets, gold nanoparticles and chitosan, and coated with a molecularly imprinted polymer for highly sensitive determination of prostate specific antigen. Microchim Acta 184(11):4469–4476. CrossRefGoogle Scholar
  26. 26.
    Jiao L, Mu Z, Miao L, Du W, Wei Q, Li H (2017) Enhanced amperometric immunoassay for the prostate specific antigen using Pt-cu hierarchical trigonal bipyramid nanoframes as a label. Microchim Acta 184(2):423–429. CrossRefGoogle Scholar
  27. 27.
    Biniaz Z, Mostafavi A, Shamspur T, Torkzadeh-Mahani M, Mohamadi M (2017) Electrochemical sandwich immunoassay for the prostate specific antigen using a polyclonal antibody conjugated to thionine and horseradish peroxidase. Microchim Acta 184(8):2731–2738. CrossRefGoogle Scholar
  28. 28.
    Souada M, Piro B, Reisberg S, Anquetin G, Noël V, Pham MC (2015) Label-free electrochemical detection of prostate-specific antigen based on nucleic acid aptamer. Biosens Bioelectron 68:49–54. CrossRefPubMedGoogle Scholar
  29. 29.
    Çevik E, Bahar Ö, Şenel M, Abasıyanık MF (2016) Construction of novel electrochemical immunosensor for detection of prostate specific antigen using ferrocene-PAMAM dendrimers. Biosens Bioelectron 86:1074–1079. CrossRefPubMedGoogle Scholar
  30. 30.
    Liu B, Lu L, Hua E, Jiang S, Xie G (2012) Detection of the human prostate-specific antigen using an aptasensor with gold nanoparticles encapsulated by graphitized mesoporous carbon. Microchim Acta 178(1–2):163–170CrossRefGoogle Scholar
  31. 31.
    Sarkar P, Pal PS, Ghosh D, Setford SJ, Tothill IE (2002) Amperometric biosensors for detection of the prostate cancer marker (PSA). Int J Pharm 238:1–9CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Masoud Karimipour
    • 1
    Email author
  • Esmaeil Heydari-Bafrooei
    • 2
    Email author
  • Mahjubeh Sanjari
    • 1
  • Malin B. Johansson
    • 3
  • Mehdi Molaei
    • 1
  1. 1.Department of PhysicsVali-e-Asr University of RafsanjanRafsanjanIran
  2. 2.Department of Chemistry, Faculty of ScienceVali-e-Asr University of RafsanjanRafsanjanIran
  3. 3.Department of Chemistry-ÅngströmPhysical Chemistry Uppsala UniversityUppsalaSweden

Personalised recommendations