Advertisement

Microchimica Acta

, 186:31 | Cite as

Colorimetric determination of mercury(II) using gold nanoparticles and double ligand exchange

  • Danlian HuangEmail author
  • Xigui Liu
  • Cui LaiEmail author
  • Lei Qin
  • Chen Zhang
  • Huan Yi
  • Guangming Zeng
  • Bisheng Li
  • Rui Deng
  • Shiyu Liu
  • Yujin Zhang
Original Paper
  • 114 Downloads

Abstract

A colorimetric assay is described for highly selective and sensitive determination of Hg(II) ions by using gold nanoparticles (AuNPs) functionalized with dithioerythritol (DETL). This method relies on the unique optical properties of DETL-functionalized AuNPs as well as the thiophilicity of both AuNPs and Hg(II). In the presence of DETL, the AuNPs aggregate due to ligand exchange between thiol groups of DETL and the citrate ions on the surface of AuNPs. This induces a color change from red to blue. On addition of Hg(II), the thiol groups preferably interact with Hg(II) rather than with AuNPs. Thus, the DETL is released from the surface of the AuNPs and binds to Hg(II). This triggers the redispersion of the AuNPs. The ratio of absorbances at 650 and 525 nm drops linearly in two Hg(II) concentration ranges (viz. from 0.1 to 0.5 μM, and from 0.5 to 5 μM). The ions Cu(II), Pb(II), and Cd(II) do not interfere even in the absence of masking agents. The detection limit is as low as 24 nM.

Graphical abstract

A highly selective colorimetric method based on gold nanoparticles via double ligand exchange reaction is described for determination of Hg2+. This assay can selective detect Hg2+ with no response to major interfering metal ions such as Cu2+, Pb2+, and Cd2+ in the absence of masking agents compared with previous works.

Keywords

Colorimetric assay Gold nanoparticles Dithioerythritol Hg(II) ions Cu(II) ions Pb(II) ions Cd(II) ions Thiophilicity Ligand exchange Masking agents 

Notes

Acknowledgements

This study was financially Supported by the Program for the National Natural Science Foundation of China (51879101,51579098, 51779090, 51709101, 51408206, 51521006), the National Program for Support of Top–Notch Young Professionals of China (2014), The Science and Technology Plan Project of Hunan Province (2018SK20410, 2017SK2243, 2016RS3026), the Program for Changjiang Scholars and Innovative Research Team in University (IRT-13R17), and the Fundamental Research Funds for the Central Universities (531109200027,531107050978, 531107051080).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2018_3126_MOESM1_ESM.docx (429 kb)
ESM 1 (DOCX 429 kb)

References

  1. 1.
    Xue W, Huang D, Zeng G, Wan J, Zhang C, Xu R, Cheng M, Deng R (2018) Nanoscale zero-valent iron coated with rhamnolipid as an effective stabilizer for immobilization of cd and Pb in river sediments. J Hazard Mater 341:381CrossRefGoogle Scholar
  2. 2.
    Gong X, Huang D, Liu Y, Zeng G, Wang R, Wei J, Huang C, Xu P, Wan J, Zhang C (2018) Pyrolysis and reutilization of plant residues after phytoremediation of heavy metals contaminated sediments: for heavy metals stabilization and dye adsorption. Bioresour Technol 253:64–71.  https://doi.org/10.1016/j.biortech.2018.01.018 CrossRefPubMedGoogle Scholar
  3. 3.
    Da Q, Gu Y, Peng X, Zhang L, Du S (2018) Colorimetric and visual detection of mercury(II) based on the suppression of the interaction of dithiothreitol with agar-stabilized silver-coated gold nanoparticles. Microchim Acta 185(7):357.  https://doi.org/10.1007/s00604-018-2899-y CrossRefGoogle Scholar
  4. 4.
    Butwong N, Kunthadong P, Soisungnoen P, Chotichayapong C, Srijaranai S, Luong JHT (2018) Silver-doped CdS quantum dots incorporated into chitosan-coated cellulose as a colorimetric paper test stripe for mercury. Microchim Acta 185(2):126.  https://doi.org/10.1007/s00604-018-2671-3 CrossRefGoogle Scholar
  5. 5.
    Huang D, Li Z, Zeng G, Zhou C, Xue W, Gong X, Yan X, Chen S, Wang W, Cheng M (2019) Megamerger in photocatalytic field: 2D g-C3N4 nanosheets serve as support of 0D nanomaterials for improving photocatalytic performance. Appl Catal B Environ 240:153–173.  https://doi.org/10.1016/j.apcatb.2018.08.071 CrossRefGoogle Scholar
  6. 6.
    Wang RZ, Huang DL, Liu YG, Zhang C, Lai C, Zeng GM, Cheng M, Gong XM, Wan J, Luo H (2018) Investigating the adsorption behavior and the relative distribution of Cd2+ sorption mechanisms on biochars by different feedstock. Bioresour Technol 261Google Scholar
  7. 7.
    Lai C, Liu X, Qin L, Zhang C, Zeng G, Huang D, Cheng M, Xu P, Yi H, Huang D (2017) Chitosan-wrapped gold nanoparticles for hydrogen-bonding recognition and colorimetric determination of the antibiotic kanamycin. Microchim Acta 184(7):2097–2105.  https://doi.org/10.1007/s00604-017-2218-z CrossRefGoogle Scholar
  8. 8.
    Wang X, Yang X, Wang N, Lv J, Wang H, Choi MMF, Bian W (2018) Graphitic carbon nitride quantum dots as an “off-on” fluorescent switch for determination of mercury(II) and sulfide. Microchim Acta 185(10):471.  https://doi.org/10.1007/s00604-018-2994-0 CrossRefGoogle Scholar
  9. 9.
    Liu X, Huang D, Lai C, Zeng G, Qin L, Zhang C, Yi H, Li B, Deng R, Liu S, Zhang Y (2018) Recent advances in sensors for tetracycline antibiotics and their applications. TrAC Trends Anal Chem 109:260–274.  https://doi.org/10.1016/j.trac.2018.10.011 CrossRefGoogle Scholar
  10. 10.
    Hong M, Zeng B, Li M, Xu X, Chen G (2017) An ultrasensitive conformation-dependent colorimetric probe for the detection of mercury(II) using exonuclease III-assisted target recycling and gold nanoparticles. Microchim Acta 185(1):72.  https://doi.org/10.1007/s00604-017-2536-1 CrossRefGoogle Scholar
  11. 11.
    Wang C, Tang G, Tan H (2018) Colorimetric determination of mercury(II) via the inhibition by ssDNA of the oxidase-like activity of a mixed valence state cerium-based metal-organic framework. Microchim Acta 185(10):475.  https://doi.org/10.1007/s00604-018-3011-3 CrossRefGoogle Scholar
  12. 12.
    Zarlaida F, Adlim M (2017) Gold and silver nanoparticles and indicator dyes as active agents in colorimetric spot and strip tests for mercury(II) ions: a review. Microchim Acta 184(1):45–58.  https://doi.org/10.1007/s00604-016-1967-4 CrossRefGoogle Scholar
  13. 13.
    Qin L, Zeng G, Lai C, Huang D, Zhang C, Xu P, Hu T, Liu X, Cheng M, Liu Y (2017) A visual application of gold nanoparticles: simple, reliable and sensitive detection of kanamycin based on hydrogen-bonding recognition. Sensors Actuators B Chem 243:946–954CrossRefGoogle Scholar
  14. 14.
    Yun W, Jiang J, Cai D, Zhao P, Liao J, Sang G (2016) Ultrasensitive visual detection of DNA with tunable dynamic range by using unmodified gold nanoparticles and target catalyzed hairpin assembly amplification. Biosens Bioelectron 77:421–427CrossRefGoogle Scholar
  15. 15.
    Lai C, Qin L, Zeng G, Liu Y, Huang D, Zhang C, Xu P, Cheng M, Qin X, Wang M (2016) Sensitive and selective detection of mercury ions based on papain and 2,6-pyridinedicarboxylic acid functionalized gold nanoparticles. RSC Adv 6(4):3259–3266.  https://doi.org/10.1039/c5ra23157d CrossRefGoogle Scholar
  16. 16.
    Zhou Y, Dong H, Liu L, Li M, Xiao K, Xu M (2014) Selective and sensitive colorimetric sensor of mercury (II) based on gold nanoparticles and 4-mercaptophenylboronic acid. Sensors Actuators B Chem 196:106–111CrossRefGoogle Scholar
  17. 17.
    Feng JJ, Guo H, Li YF, Wang YH, Chen WY, Wang AJ (2013) Single molecular functionalized gold nanoparticles for hydrogen-bonding recognition and colorimetric detection of dopamine with high sensitivity and selectivity. ACS Appl Mater Interfaces 5(4):1226–1231CrossRefGoogle Scholar
  18. 18.
    Duan J, Yin H, Wei R, Wang W (2014) Facile colorimetric detection of Hg2+ based on anti-aggregation of silver nanoparticles. Biosens Bioelectron 57:139–142.  https://doi.org/10.1016/j.bios.2014.02.007 CrossRefPubMedGoogle Scholar
  19. 19.
    Huang D, Liu L, Zeng G, Xu P, Huang C, Deng L, Wang R, Wan J (2017) The effects of rice straw biochar on indigenous microbial community and enzymes activity in heavy metal-contaminated sediment. Chemosphere 174:545–553CrossRefGoogle Scholar
  20. 20.
    Kim YR, Mahajan RK, Kim JS, Kim H (2010) Highly sensitive gold nanoparticle-based colorimetric sensing of mercury(II) through simple ligand exchange reaction in aqueous media. ACS Appl Mater Interfaces 2(1):292–295.  https://doi.org/10.1021/am9006963 CrossRefPubMedGoogle Scholar
  21. 21.
    Chen Z, Zhang C, Ma H, Zhou T, Jiang B, Chen M, Chen X (2015) A non-aggregation spectrometric determination for mercury ions based on gold nanoparticles and thiocyanuric acid. Talanta 134:603–606.  https://doi.org/10.1016/j.talanta.2014.11.065 CrossRefPubMedGoogle Scholar
  22. 22.
    Tsai DH, Cho TJ, DelRio FW, Gorham JM, Zheng J, Tan J, Zachariah MR, Hackley VA (2014) Controlled formation and characterization of dithiothreitol-conjugated gold nanoparticle clusters. Langmuir 30(12):3397–3405CrossRefGoogle Scholar
  23. 23.
    Huang CC, Chang HT (2006) Selective gold-nanoparticle-based “turn-on” fluorescent sensors for detection of mercury (II) in aqueous solution. Anal Chem 78(24):8332–8338CrossRefGoogle Scholar
  24. 24.
    Chang HY, Hsiung TM, Huang YF, Huang CC (2011) Using rhodamine 6G-modified gold nanoparticles to detect organic mercury species in highly saline solutions. Environ Sci Technol 45(4):1534–1539.  https://doi.org/10.1021/es103369d CrossRefPubMedGoogle Scholar
  25. 25.
    Wang L, Li T, Du Y, Chen C, Li B, Zhou M, Dong S (2010) Au NPs-enhanced surface plasmon resonance for sensitive detection of mercury(II) ions. Biosens Bioelectron 25(12):2622–2626.  https://doi.org/10.1016/j.bios.2010.04.027 CrossRefPubMedGoogle Scholar
  26. 26.
    Yu CJ, Tseng WL (2008) Colorimetric detection of mercury (II) in a high-salinity solution using gold nanoparticles capped with 3-mercaptopropionate acid and adenosine monophosphate. Langmuir 24(21):12717–12722CrossRefGoogle Scholar
  27. 27.
    Chen J, Zheng A, Chen A, Gao Y, He C, Kai X, Wu G, Chen Y (2007) A functionalized gold nanoparticles and rhodamine 6G based fluorescent sensor for high sensitive and selective detection of mercury(II) in environmental water samples. Anal Chim Acta 599(1):134–142.  https://doi.org/10.1016/j.aca.2007.07.074 CrossRefPubMedGoogle Scholar
  28. 28.
    Li YL, Leng YM, Zhang YJ, Li TH, Shen ZY, Wu AG (2014) A new simple and reliable Hg2+ detection system based on anti-aggregation of unmodified gold nanoparticles in the presence of O-phenylenediamine. Sensors Actuators B Chem 200:140–146.  https://doi.org/10.1016/j.snb.2014.04.039 CrossRefGoogle Scholar
  29. 29.
    Huang CC, Chang HT (2007) Parameters for selective colorimetric sensing of mercury(II) in aqueous solutions using mercaptopropionic acid-modified gold nanoparticles. Chem Commun (12):1215–1217.  https://doi.org/10.1039/b615383f
  30. 30.
    Ding N, Zhao H, Peng W, He Y, Zhou Y, Yuan L, Zhang Y (2012) A simple colorimetric sensor based on anti-aggregation of gold nanoparticles for Hg2+ detection. Colloids Surf A Physicochem Eng Asp 395:161–167.  https://doi.org/10.1016/j.colsurfa.2011.12.024 CrossRefGoogle Scholar
  31. 31.
    Gao Y, Li X, Li Y, Li T, Zhao Y, Wu A (2014) A simple visual and highly selective colorimetric detection of Hg2+ based on gold nanoparticles modified by 8-hydroxyquinolines and oxalates. Chem Commun 50(49):6447–6450.  https://doi.org/10.1039/c4cc00069b CrossRefGoogle Scholar
  32. 32.
    Si S, Kotal A, Mandal TK (2007) One-dimensional assembly of peptide-functionalized gold nanoparticles: an approach toward mercury ion sensing. J Phys Chem C 111(3):1248–1255CrossRefGoogle Scholar
  33. 33.
    Lou T, Chen Z, Wang Y, Chen L (2011) Blue-to-red colorimetric sensing strategy for hg(2)(+) and ag(+) via redox-regulated surface chemistry of gold nanoparticles. ACS Appl Mater Interfaces 3(5):1568–1573.  https://doi.org/10.1021/am200130e CrossRefPubMedGoogle Scholar
  34. 34.
    Yu CJ, Cheng TL, Tseng WL (2009) Effects of Mn2+ on oligonucleotide-gold nanoparticle hybrids for colorimetric sensing of Hg2+: improving colorimetric sensitivity and accelerating color change. Biosens Bioelectron 25(1):204–210.  https://doi.org/10.1016/j.bios.2009.06.038 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Danlian Huang
    • 1
    • 2
    Email author
  • Xigui Liu
    • 1
    • 2
  • Cui Lai
    • 1
    • 2
    Email author
  • Lei Qin
    • 1
    • 2
  • Chen Zhang
    • 1
    • 2
  • Huan Yi
    • 1
    • 2
  • Guangming Zeng
    • 1
    • 2
  • Bisheng Li
    • 1
    • 2
  • Rui Deng
    • 1
    • 2
  • Shiyu Liu
    • 1
    • 2
  • Yujin Zhang
    • 1
    • 2
  1. 1.College of Environmental Science and EngineeringHunan UniversityChangshaPeople’s Republic of China
  2. 2.Key Laboratory of Environmental Biology and Pollution Control, Ministry of EducationHunan UniversityChangshaChina

Personalised recommendations