Advertisement

Microchimica Acta

, 186:55 | Cite as

Continuous magnetic droplets and microfluidics: generation, manipulation, synthesis and detection

  • Entesar Al-Hetlani
  • Mohamed O. Amin
Review Article
  • 58 Downloads

Abstract

In this review, an introduction is given to provide the fundamental principles of magnetic droplet microfluidics. This is followed by a thorough discussion of methods that have been developed for the continuous generation of magnetic droplets and their controlled and precise manipulation by using external magnetic fields. Next, attention is given to techniques devised for the continuous fabrication of magnetic materials in droplets with an emphasis on the synthesis and modification of magnetic nanoparticles (MNPs), magnetic microstructures, Janus microparticles and magnetic hydrogels. In addition, selected applications of continuous magnetic droplets in (bio)assays and detection methods are discussed. The review (with 113 refs.) ends with concluding remarks and a discussion of current challenges and the future outlook for the field of continuous magnetic droplet microfluidics.

Graphical abstract

Continuous generation of magnetic droplets in microfluidic devices has the advantage of producing droplets at high frequencies and therefore has been exploited for the synthesis and generation of magnetic microparticles, manipulation, performing (bio)assyas and detection of magnetic contents.

Keywords

Magnetic droplets high throughput Generation Manipulation, (bio)assays Detection 

Abbreviations

aMWCNTs

Acidified multi wall carbon nanotubes

a.u.

Arbitrary unit

BacNWs

Bacterial magnetic nanowires

Bo

Bond number

BSA

Bovine serum albumin

BET

Brunauer-Emmett-Teller

Ca

Capillary number

CMC

Carboxymethyl cellulose

CH

Congenital hypothyroidism

CV

Coefficient deviation/ Coefficient of variance

CUR

Curcumin

DSC

Differential scanning calorimetry

DMF

Digital microfluidics

DMMF

Droplet micro-magnetofluidics

EWOD

Electrowetting on dielectric

Cmax

Entrance of the throat

ETFE

Ethylene tetrafluoroethylene

ETPTA

Ethoxylated trimethylolopropane triacrylate

FR

False rate of counting

FF

Ferrofluid

FEM

Finite element method

FTIC-BSA

Flourescein isothiocyanate-bovine serum albumin

5FU

5 fluorouracil

Qd

Flow rate of the dispersed phase

Qc

Flow rate of the continuous phase

Qi

Flow rate of the inner phase

Qo

Flow rate of the outer phase

FTIR

Fourier-transform infrared spectroscopy

FFM

Free-flow magnetophoresis

GA

Glutaraldehyde

GMR

Giant magnetoresistive

GO

Graphene oxide

HSA

Human serum albumin

HSA-MB

Human serum albumin-magnetic beads

HCPK

1-hydroxycyclohexyl phenyl ketone

IFD

Initial ferrofluid droplet

FFD

Final ferrofluid droplet

Fi

Interfacial tension force

KHz

KiloHertz

LbL

Layer-by-layer

KL

Lift force ratio

KM

Magnetic force ratio

xm*

Magnet location

MNPs

Magnetic nanoparticles

MP

Magnetic polymeric phase

MGITC-AuNPs

Malachite green isothiocyanate gold nanoparticles

Lmig*

Migration length

MPGCBs

Magnetic porous graphene oxide/multi-walled carbon nanotube beads

NPs

Nanoparticles

NIR

Near infrared

Nd-Fe-B

Neodymium-iron-boron

MOPS

3-(N-Morpholino)propanesulfonic acid

FR,net

Net force

NB

Non-breakup

Fl

Non-inertial lift force

NM

No magnetic field

Oe

Oersted

O/W

Oil-in-water

MIL

Paramagnetic ionic liquid

P

Penicillin

BPO

Permanent obstruction

PDMS

Polydimethylsiloxane

PFA

Perfluoroalkoxy alkane

PEGDA

Poly(ethylene glycol) diacrylate

PEG-PFPE

Polyethylene glycol perfluoropolyether

PEDOT/PSS

Poly(3,4-ethylenedioxythiophene)/polystyrene sulfonate

PE

Polyelectrolytes

PEEK

Polyether ether ketone

PAH-FTIC

Poly(fluorescein isothiocyanate allylamine hydrochloride)

PP

Polymeric phase

PCR

Polymerase chain reaction

PLL

Poly(L-lactic acid)

PS

Polystyrene

PSS

Poly(sodium-4-styrerne sulfonate)

PTFE

Polytetrafluoroethylene

PVA

Polyvinyl alcohol

P(VDF-TrFE)

Poly(vinylidene fluoride-trifluoroethylene)

PVP

Polyvinylpyrrolidone

QDs

Quantum dots

Re

Reynolds number

RITC

Rhodamine B isothiocyanate

Ms

Saturation magnetization

SEM

Scanning electron microscopy

SEM-EDX

Scanning electron microscopy-energy dispersive X-ray spectroscopy

SiNPs

Silicon nanoparticles

SDS

Sodium dodecyl sulfate

SAR

Specific absorption rates

SERS

Surface enhanced Raman spectroscopy

SDA

Supervised discriminant analysis

BTO

Temporary obstruction

THF

Tetrahydrofuran

TGA

Thermogravemtric analysis

TPGDA

Tri(propylene glycol) diacrylate

UM

Uniform magnetic field

W/O/W

Water-in-oil-in-water droplets

We

Weber number

VSM

Vibrating sample magnetometer

BNO

Without obstruction

XPS

X-ray photon spectroscopy

XRD

X-ray powder diffraction

Symbols

g

Acceleration of gravity

θ

Angle

C

Concentration

l

Characteristic length scale

cP

Centipoise

Δρ

Difference in density

Δχ

Difference in magnetic susceptibility

Fd

Drag force

η

Dynamic viscosity

γ

Interfacial tension

B

Magnetic field gradient

H

Magnetic field strength

B

Magnetic flux density

Fmag

Magnetic force

M

Magnetization

μm

Micrometer

μL

Microlitres

μV

Microvolts

mPa

Milli Pascal

mT

Milli Tesla

nN

Nanonewtons

N

Number of MNPs

μ0

Permeability of vacuum

pL

Picolitres

pN

Piconewtons

r

Radius of the droplet

σ

Standard deviation

v

Velocity

udefl

Dragged velocity

uhyd

Hydrodynamic flow velocity

umag

Magnetic velocity

V

Volume

Notes

References

  1. 1.
    Day P, Manz A, Zhang Y (2012) Microdroplet technology: principles and emerging applications in biology and chemistry. Springer Science & Business MediaGoogle Scholar
  2. 2.
    Tice JD, Song H, Lyon AD, Ismagilov RF (2003) Formation of droplets and mixing in multiphase microfluidics at low values of the Reynolds and the capillary numbers. Langmuir 19(22):9127–9133CrossRefGoogle Scholar
  3. 3.
    Tirandazi P, Hidrovo CH (2018) An integrated gas-liquid droplet microfluidic platform for digital sampling and detection of airborne targets. Sensors Actuators B Chem 267:279–293CrossRefGoogle Scholar
  4. 4.
    Tan Y-C, Fisher JS, Lee AI, Cristini V, Lee AP (2004) Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting. Lab Chip 4(4):292–298PubMedCrossRefGoogle Scholar
  5. 5.
    Zheng B, Roach LS, Ismagilov RF (2003) Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets. J Am Chem Soc 125(37):11170–11171PubMedCrossRefGoogle Scholar
  6. 6.
    Li L, Mustafi D, Fu Q, Tereshko V, Chen DL, Tice JD, Ismagilov RF (2006) Nanoliter microfluidic hybrid method for simultaneous screening and optimization validated with crystallization of membrane proteins. Proc Natl Acad Sci 103(51):19243–19248PubMedCrossRefGoogle Scholar
  7. 7.
    Boedicker JQ, Li L, Kline TR, Ismagilov RF (2008) Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based microfluidics. Lab Chip 8(8):1265–1272PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Huebner A, Sharma S, Srisa-Art M, Hollfelder F, Edel JB, deMello AJ (2008) Microdroplets: a sea of applications? Lab Chip 8(8):1244–1254PubMedCrossRefGoogle Scholar
  9. 9.
    Muradoglu M, Stone HA (2005) Mixing in a drop moving through a serpentine channel: a computational study. Phys Fluids 17(7):073305CrossRefGoogle Scholar
  10. 10.
    Beer NR, Wheeler EK, Lee-Houghton L, Watkins N, Nasarabadi S, Hebert N, Leung P, Arnold DW, Bailey CG, Colston BW (2008) On-chip single-copy real-time reverse-transcription PCR in isolated picoliter droplets. Anal Chem 80(6):1854–1858PubMedCrossRefGoogle Scholar
  11. 11.
    Lindsay S, Vázquez T, Egatz-Gómez A, Loyprasert S, Garcia AA, Wang J (2007) Discrete microfluidics with electrochemical detection. Analyst 132(5):412–416PubMedCrossRefGoogle Scholar
  12. 12.
    Chiu DT, Lorenz RM, Jeffries GDM (2009) Droplets for Ultrasmall-volume analysis. Anal Chem 81(13):5111–5118PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Baroud CN, Gallaire F, Dangla R (2010) Dynamics of microfluidic droplets. Lab Chip 10(16):2032–2045PubMedCrossRefGoogle Scholar
  14. 14.
    Gu H, Duits MH, Mugele F (2011) Droplets formation and merging in two-phase flow microfluidics. Int J Mol Sci 12(4):2572–2597PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Pekas N, Porter MD, Tondra M, Popple A, Jander A (2004) Giant magnetoresistance monitoring of magnetic picodroplets in an integrated microfluidic system. Appl Phys Lett 85(20):4783–4785CrossRefGoogle Scholar
  16. 16.
    Scherer C, Figueiredo Neto AM (2005) Ferrofluids: properties and applications. Braz J Phys 35(3A):718–727CrossRefGoogle Scholar
  17. 17.
    Nguyen N-T, Ng KM, Huang X (2006) Manipulation of ferrofluid droplets using planar coils. Appl Phys Lett 89(5):052509CrossRefGoogle Scholar
  18. 18.
    Al-Hetlani E, Hatt OJ, Vojtíšek M, Tarn MD, Iles A, Pamme N (2010) Sorting and manipulation of magnetic droplets in continuous flow. AIP Conference Proceedings 1311:167–175CrossRefGoogle Scholar
  19. 19.
    Lombardi D, Dittrich PS (2011) Droplet microfluidics with magnetic beads: a new tool to investigate drug–protein interactions. Anal Bioanal Chem 399(1):347–352PubMedCrossRefGoogle Scholar
  20. 20.
    Nguyen N-T (2012) Micro-magnetofluidics: interactions between magnetism and fluid flow on the microscale. Microfluid Nanofluid 12(1–4):1–16CrossRefGoogle Scholar
  21. 21.
    Pollack MG, Shenderov AD, Fair R (2002) Electrowetting-based actuation of droplets for integrated microfluidics. Lab Chip 2(2):96–101PubMedCrossRefGoogle Scholar
  22. 22.
    Baroud CN, de Saint Vincent MR, Delville J-P (2007) An optical toolbox for total control of droplet microfluidics. Lab Chip 7(8):1029–1033PubMedCrossRefGoogle Scholar
  23. 23.
    Okochi M, Tsuchiya H, Kumazawa F, Shikida M, Honda H (2010) Droplet-based gene expression analysis using a device with magnetic force-based-droplet-handling system. J Biosci Bioeng 109(2):193–197PubMedCrossRefGoogle Scholar
  24. 24.
    Pamme N (2006) Magnetism and microfluidics. Lab Chip 6(1):24–38PubMedCrossRefGoogle Scholar
  25. 25.
    Tarn MD, Peyman SA, Robert D, Iles A, Wilhelm C, Pamme N (2009) The importance of particle type selection and temperature control for on-chip free-flow magnetophoresis. J Magn Magn Mater 321(24):4115–4122CrossRefGoogle Scholar
  26. 26.
    Lee H, Xu L, Ahn B, Lee K, Oh KW (2012) Continuous-flow in-droplet magnetic particle separation in a droplet-based microfluidic platform. Microfluid Nanofluid 13(4):613–623CrossRefGoogle Scholar
  27. 27.
    Tan S-H, Nguyen N-T, Yobas L, Kang TG (2010) Formation and manipulation of ferrofluid droplets at a microfluidic T-junction. J Micromech Microeng 20(4):045004CrossRefGoogle Scholar
  28. 28.
    Chen CH, Abate AR, Lee D, Terentjev EM, Weitz DA (2009) Microfluidic assembly of magnetic hydrogel particles with uniformly anisotropic structure. Adv Mater 21(31):3201–3204CrossRefGoogle Scholar
  29. 29.
    Huang J-P, Ge X-H, Xu J-H, Luo G-S (2016) Controlled formation and coalescence of paramagnetic ionic liquid droplets under magnetic field in coaxial microfluidic devices. Chem Eng Sci 152:293–300CrossRefGoogle Scholar
  30. 30.
    Ohashi T, Kuyama H, Hanafusa N, Togawa Y (2007) A simple device using magnetic transportation for droplet-based PCR. Biomed Microdevices 9(5):695–702PubMedCrossRefGoogle Scholar
  31. 31.
    Teh S-Y, Lin R, Hung L-H, Lee AP (2008) Droplet microfluidics. Lab Chip 8(2):198–220PubMedCrossRefGoogle Scholar
  32. 32.
    Yapici MK, Zou J (2008) Permalloy-coated tungsten probe for magnetic manipulation of micro droplets. Microsyst Technol 14(6):881–891CrossRefGoogle Scholar
  33. 33.
    Shah GJ, Veale JL, Korin Y, Reed EF, Gritsch HA, Kim C-JC (2010) Specific binding and magnetic concentration of CD 8+ T-lymphocytes on electrowetting-on-dielectric platform. Biomicrofluidics 4(4):044106PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Gascoyne PRC, Vykoukal JV (2004) Dielectrophoresis-based sample handling in general-purpose programmable diagnostic instruments. Proceedings of the IEEE Institute of Electrical and Electronics Engineers 92(1):22–42PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Darhuber AA, Valentino JP, Troian SM, Wagner S (2003) Thermocapillary actuation of droplets on chemically patterned surfaces by programmable microheater arrays. J Microelectromech Syst 12(6):873–879CrossRefGoogle Scholar
  36. 36.
    Yang C, Zhang Z, Li G (2018) Programmable droplet manipulation by combining a superhydrophobic magnetic film and an electromagnetic pillar array. Sensors Actuators B Chem 262:892–901CrossRefGoogle Scholar
  37. 37.
    Guttenberg Z, Muller H, Habermuller H, Geisbauer A, Pipper J, Felbel J, Kielpinski M, Scriba J, Wixforth A (2005) Planar chip device for PCR and hybridization with surface acoustic wave pump. Lab Chip 5(3):308–317PubMedCrossRefGoogle Scholar
  38. 38.
    Lehmann U, Hadjidj S, Parashar VK, Vandevyver C, Rida A, Gijs MAM (2006) Two-dimensional magnetic manipulation of microdroplets on a chip as a platform for bioanalytical applications. Sensors Actuators B Chem 117(2):457–463CrossRefGoogle Scholar
  39. 39.
    Liu J, Tan S-H, Yap YF, Ng MY, Nguyen N-T (2011) Numerical and experimental investigations of the formation process of ferrofluid droplets. Microfluid Nanofluid 11(2):177–187CrossRefGoogle Scholar
  40. 40.
    Liu J, Yap YF, Nguyen N-T (2011) Numerical study of the formation process of ferrofluid droplets. Phys Fluids 23(7):072008CrossRefGoogle Scholar
  41. 41.
    Ali-Cherif A, Begolo S, Descroix S, Viovy J-L, Malaquin L (2012) Programmable magnetic tweezers and droplet microfluidic device for high-throughput Nanoliter multi-step assays. Angew Chem Int Ed 51(43):10765–10769CrossRefGoogle Scholar
  42. 42.
    Sista RS, Eckhardt AE, Srinivasan V, Pollack MG, Palanki S, Pamula VK (2008) Heterogeneous immunoassays using magnetic beads on a digital microfluidic platform. Lab Chip 8(12):2188–2196PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Baret J-C (2012) Surfactants in droplet-based microfluidics. Lab Chip 12(3):422–433PubMedCrossRefGoogle Scholar
  44. 44.
    Brouzes E, Kruse T, Kimmerling R, Strey HH (2015) Rapid and continuous magnetic separation in droplet microfluidic devices. Lab Chip 15(3):908–919PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    White AK, VanInsberghe M, Petriv OI, Hamidi M, Sikorski D, Marra MA, Piret J, Aparicio S, Hansen CL (2011) High-throughput microfluidic single-cell RT-qPCR. Proc Natl Acad Sci 108(34):13999–14004PubMedCrossRefGoogle Scholar
  46. 46.
    Pamme N (2012) On-chip bioanalysis with magnetic particles. Curr Opin Chem Biol 16(3–4):436–443PubMedCrossRefGoogle Scholar
  47. 47.
    Gijs MA, Lacharme F, Lehmann U (2009) Microfluidic applications of magnetic particles for biological analysis and catalysis. Chem Rev 110(3):1518–1563CrossRefGoogle Scholar
  48. 48.
    Chen X, Zhang L (2017) A review on micromixers actuated with magnetic nanomaterials. Microchim Acta 184(10):3639–3649CrossRefGoogle Scholar
  49. 49.
    Pamme N, Manz A (2004) On-chip free-flow magnetophoresis: continuous flow separation of magnetic particles and agglomerates. Anal Chem 76(24):7250–7256PubMedCrossRefGoogle Scholar
  50. 50.
    Link DR, Grasland-Mongrain E, Duri A, Sarrazin F, Cheng Z, Cristobal G, Marquez M, Weitz DA (2006) Electric control of droplets in microfluidic devices. Angew Chem Int Ed 45(16):2556–2560CrossRefGoogle Scholar
  51. 51.
    Schuler F, Schwemmer F, Trotter M, Wadle S, Zengerle R, von Stetten F, Paust N (2015) Centrifugal step emulsification applied for absolute quantification of nucleic acids by digital droplet RPA. Lab Chip 15(13):2759–2766PubMedCrossRefGoogle Scholar
  52. 52.
    Yan Q, Xuan S, Ruan X, Wu J, Gong X (2015) Magnetically controllable generation of ferrofluid droplets. Microfluid Nanofluid 19(6):1377–1384CrossRefGoogle Scholar
  53. 53.
    Ray A, Varma VB, Jayaneel P, Sudharsan N, Wang Z, Ramanujan RV (2017) On demand manipulation of ferrofluid droplets by magnetic fields. Sensors Actuators B Chem 242:760–768CrossRefGoogle Scholar
  54. 54.
    Kahkeshani S, Di Carlo D (2016) Drop formation using ferrofluids driven magnetically in a step emulsification device. Lab Chip 16(13):2474–2480PubMedCrossRefGoogle Scholar
  55. 55.
    Peyman SA, Kwan EY, Margarson O, Iles A, Pamme N (2009) Diamagnetic repulsion—a versatile tool for label-free particle handling in microfluidic devices. J Chromatogr A 1216(52):9055–9062PubMedCrossRefGoogle Scholar
  56. 56.
    Hartshorne H, Backhouse CJ, Lee WE (2004) Ferrofluid-based microchip pump and valve. Sensors Actuators B Chem 99(2–3):592–600CrossRefGoogle Scholar
  57. 57.
    Alorabi AQ, Tarn MD, Gómez-Pastora J, Bringas E, Ortiz I, Paunov VN, Pamme N (2017) On-chip polyelectrolyte coating onto magnetic droplets–towards continuous flow assembly of drug delivery capsules. Lab Chip 17(22):3785–3795PubMedCrossRefGoogle Scholar
  58. 58.
    Pamme N, Wilhelm C (2006) Continuous sorting of magnetic cells via on-chip free-flow magnetophoresis. Lab Chip 6(8):974–980PubMedCrossRefGoogle Scholar
  59. 59.
    Zhang K, Liang Q, Ma S, Mu X, Hu P, Wang Y, Luo G (2009) On-chip manipulation of continuous picoliter-volume superparamagnetic droplets using a magnetic force. Lab Chip 9(20):2992–2999PubMedCrossRefGoogle Scholar
  60. 60.
    Zhang K, Liang Q, Ai X, Hu P, Wang Y, Luo G (2011) Comprehensive two-dimensional manipulations of picoliter microfluidic droplets sampled from nanoliter samples. Anal Chem 83(20):8029–8034PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Zhang K, Liang Q, Ai X, Hu P, Wang Y, Luo G (2011) On-demand microfluidic droplet manipulation using hydrophobic ferrofluid as a continuous-phase. Lab Chip 11(7):1271–1275PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Jo Y, Shen F, Hahn YK, Park J-H, Park J-K (2016) Magnetophoretic sorting of single cell-containing microdroplets. Micromachines 7(4):56PubMedCentralCrossRefPubMedGoogle Scholar
  63. 63.
    Banerjee U, Raj A, Sen A (2018) Dynamics of aqueous ferrofluid droplets at coflowing liquid-liquid interface under a non-uniform magnetic field. Appl Phys Lett 113(14):143702CrossRefGoogle Scholar
  64. 64.
    Wu Y, Fu T, Ma Y, Li HZ (2015) Active control of ferrofluid droplet breakup dynamics in a microfluidic T-junction. Microfluid Nanofluid 18(1):19–27CrossRefGoogle Scholar
  65. 65.
    Afkhami S, Tyler A, Renardy Y, Renardy M, Pierre TS, Woodward R, Riffle J (2010) Deformation of a hydrophobic ferrofluid droplet suspended in a viscous medium under uniform magnetic fields. J Fluid Mech 663:358–384CrossRefGoogle Scholar
  66. 66.
    Li H, Wu Y, Wang X, Zhu C, Fu T, Ma Y (2016) Magnetofluidic control of the breakup of ferrofluid droplets in a microfluidic Y-junction. RSC Adv 6(1):778–785CrossRefGoogle Scholar
  67. 67.
    Yamada M, Doi S, Maenaka H, Yasuda M, Seki M (2008) Hydrodynamic control of droplet division in bifurcating microchannel and its application to particle synthesis. J Colloid Interface Sci 321(2):401–407PubMedCrossRefGoogle Scholar
  68. 68.
    Aboutalebi M, Bijarchi MA, Shafii MB, Hannani SK (2018) Numerical investigation on splitting of ferrofluid microdroplets in T-junctions using an asymmetric magnetic field with proposed correlation. J Magn Magn Mater 447:139–149CrossRefGoogle Scholar
  69. 69.
    Sander JS, Erb RM, Denier C, Studart AR (2012) Magnetic transport, mixing and release of cargo with tailored nanoliter droplets. Adv Mater 24(19):2582–2587PubMedCrossRefGoogle Scholar
  70. 70.
    Misuk V, Mai A, Giannopoulos K, Alobaid F, Epple B, Loewe H (2013) Micro magnetofluidics: droplet manipulation of double emulsions based on paramagnetic ionic liquids. Lab Chip 13(23):4542–4548PubMedCrossRefGoogle Scholar
  71. 71.
    Chu LY, Utada AS, Shah RK, Kim JW, Weitz DA (2007) Controllable monodisperse multiple emulsions. Angew Chem Int Ed 46(47):8970–8974CrossRefGoogle Scholar
  72. 72.
    Adams L, Kodger TE, Kim S-H, Shum HC, Franke T, Weitz DA (2012) Single step emulsification for the generation of multi-component double emulsions. Soft Matter 8(41):10719–10724CrossRefGoogle Scholar
  73. 73.
    Nisisako T, Okushima S, Torii T (2005) Controlled formulation of monodisperse double emulsions in a multiple-phase microfluidic system. Soft Matter 1(1):23–27CrossRefGoogle Scholar
  74. 74.
    Lin G, Makarov D, Medina-Sánchez M, Guix M, Baraban L, Cuniberti G, Schmidt OG (2015) Magnetofluidic platform for multidimensional magnetic and optical barcoding of droplets. Lab Chip 15(1):216–224PubMedCrossRefGoogle Scholar
  75. 75.
    Teste B, Jamond N, Ferraro D, Viovy J-L, Malaquin L (2015) Selective handling of droplets in a microfluidic device using magnetic rails. Microfluid Nanofluid 19(1):141–153CrossRefGoogle Scholar
  76. 76.
    Varma V, Ray A, Wang Z, Wang Z, Ramanujan R (2016) Droplet merging on a lab-on-a-chip platform by uniform magnetic fields. Sci Rep 6:37671PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Frenz L, Harrak AE, Pauly M, Bégin-Colin S, Griffiths AD, Baret J-C (2008) Droplet-based microreactors for the synthesis of magnetic Iron oxide Nanoparticles. Angew Chem Int Ed 47(36):6817–6820CrossRefGoogle Scholar
  78. 78.
    Paquet C, Jakubek ZJ, Simard B (2012) Superparamagnetic microspheres with controlled macroporosity generated in microfluidic devices. ACS Appl Mater Interfaces 4(9):4934–4941PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Varma V, Wu R, Wang Z, Ramanujan R (2017) Magnetic Janus particles synthesized using droplet micro-magnetofluidic techniques for protein detection. Lab Chip 17(20):3514–3525PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Jung JH, Park TJ, Lee SY, Seo TS (2012) Homogeneous biogenic paramagnetic Nanoparticle synthesis based on a microfluidic droplet generator. Angew Chem Int Ed 51(23):5634–5637CrossRefGoogle Scholar
  81. 81.
    Ferraro D, Lin Y, Teste B, Talbot D, Malaquin L, Descroix S, Abou-Hassan A (2015) Continuous chemical operations and modifications on magnetic γ-Fe2O3 nanoparticles confined in nanoliter droplets for the assembly of fluorescent and magnetic SiO2@ γ-Fe2O3. Chem Commun 51(95):16904–16907CrossRefGoogle Scholar
  82. 82.
    Zhu C, Xu W, Chen L, Zhang W, Xu H, Gu ZZ (2011) Magnetochromatic microcapsule arrays for displays. Adv Funct Mater 21(11):2043–2048CrossRefGoogle Scholar
  83. 83.
    Jiang K, Xue C, Arya C, Shao C, George EO, DeVoe DL, Raghavan SR (2011) A new approach to in-situ “micromanufacturing”: microfluidic fabrication of magnetic and fluorescent chains using Chitosan microparticles as building blocks. Small 7(17):2470–2476PubMedCrossRefGoogle Scholar
  84. 84.
    Bokharaei M, Schneider T, Dutz S, Stone RC, Mefford OT, Häfeli UO (2016) Production of monodispersed magnetic polymeric microspheres in a microfluidic chip and 3D simulation. Microfluid Nanofluid 20(1):6CrossRefGoogle Scholar
  85. 85.
    Yang C-H, Wang C-Y, Huang K-S, Kung C-P, Chang Y-C, Shaw J-F (2014) Microfluidic one-step synthesis of Fe3O4-chitosan composite particles and their applications. Int J Pharm 463(2):155–160PubMedCrossRefGoogle Scholar
  86. 86.
    Cao X, Zang L, Bu Z, Sun L, Guo D, Wang C (2016) Microfluidic fabrication of magnetic porous multi-walled carbon nanotube beads for oil and organic solvent adsorption. J Mater Chem A 4(27):10479–10485CrossRefGoogle Scholar
  87. 87.
    Bu Z, Zang L, Zhang Y, Cao X, Sun L, Qin C, Wang C (2017) Magnetic porous graphene/multi-walled carbon nanotube beads from microfluidics: a flexible and robust oil/water separation material. RSC Adv 7(41):25334–25340CrossRefGoogle Scholar
  88. 88.
    Lee SW, Choi JS, Cho KY, Yim J-H (2016) Facile fabrication of uniform-sized, magnetic, and electroconductive hybrid microspheres using a microfluidic droplet generator. Eur Polym J 80:40–47CrossRefGoogle Scholar
  89. 89.
    Kaufman G, Montejo KA, Michaut A, Majewski PW, Osuji CO (2017) Photoresponsive and Magnetoresponsive Graphene oxide microcapsules fabricated by droplet microfluidics. ACS Appl Mater Interfaces 9(50):44192–44198PubMedCrossRefGoogle Scholar
  90. 90.
    Maher S, Santos A, Kumeria T, Kaur G, Lambert M, Forward P, Evdokiou A, Losic D (2017) Multifunctional microspherical magnetic and pH responsive carriers for combination anticancer therapy engineered by droplet-based microfluidics. J Mater Chem B 5(22):4097–4109CrossRefGoogle Scholar
  91. 91.
    Shang L, Shangguan F, Cheng Y, Lu J, Xie Z, Zhao Y, Gu Z (2013) Microfluidic generation of magnetoresponsive Janus photonic crystal particles. Nanoscale 5(20):9553–9557PubMedCrossRefGoogle Scholar
  92. 92.
    Yang Y-T, Wei J, Li X, Wu L-J, Chang Z-Q, Serra CA (2015) A side-by-side capillaries-based microfluidic system for synthesizing size-and morphology-controlled magnetic anisotropy janus beads. Adv Powder Technol 26(1):156–162CrossRefGoogle Scholar
  93. 93.
    Lan J, Chen J, Li N, Ji X, Yu M, He Z (2016) Microfluidic generation of magnetic-fluorescent Janus microparticles for biomolecular detection. Talanta 151:126–131PubMedCrossRefGoogle Scholar
  94. 94.
    Yu X, Zhang C, You S, Liu H, Zhang L, Liu W, Guo S-S, Zhao X-Z (2016) Microfluidic synthesis of multiferroic Janus particles with disk-like compartments. Appl Phys Lett 108(7):073504CrossRefGoogle Scholar
  95. 95.
    Hwang DK, Dendukuri D, Doyle PS (2008) Microfluidic-based synthesis of non-spherical magnetic hydrogel microparticles. Lab Chip 8(10):1640–1647PubMedCrossRefGoogle Scholar
  96. 96.
    Ferraro D, Champ J, Teste B, Serra M, Malaquin L, Viovy J-L, De Cremoux P, Descroix S (2016) Microfluidic platform combining droplets and magnetic tweezers: application to HER2 expression in cancer diagnosis. Sci Rep 6:25540PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Gao R, Cheng Z, Choo J (2016) Wash-free magnetic immunoassay of the PSA cancer marker using SERS and droplet microfluidics. Lab Chip 16(6):1022–1029PubMedCrossRefGoogle Scholar
  98. 98.
    Gu S-Q, Zhang Y-X, Zhu Y, Du W-B, Yao B, Fang Q (2011) Multifunctional Picoliter droplet manipulation platform and its application in single cell analysis. Anal Chem 83(19):7570–7576PubMedCrossRefGoogle Scholar
  99. 99.
    Du W-B, Sun M, Gu S-Q, Zhu Y, Fang Q (2010) Automated microfluidic screening assay platform based on DropLab. Anal Chem 82(23):9941–9947PubMedCrossRefGoogle Scholar
  100. 100.
    Teste B, Ali-Cherif A, Viovy JL, Malaquin L (2013) A low cost and high throughput magnetic bead-based immuno-agglutination assay in confined droplets. Lab Chip 13(12):2344–2349PubMedCrossRefGoogle Scholar
  101. 101.
    Yoon S, Kim JA, Lee SH, Kim M, Park TH (2013) Droplet-based microfluidic system to form and separate multicellular spheroids using magnetic nanoparticles. Lab Chip 13(8):1522–1528PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Millen RL, Kawaguchi T, Granger MC, Porter MD, Tondra M (2005) Giant magnetoresistive sensors and superparamagnetic nanoparticles: a chip-scale detection strategy for immunosorbent assays. Anal Chem 77(20):6581–6587PubMedCrossRefGoogle Scholar
  103. 103.
    Shinji K, Takao Y, Ken H, Akira M, Saburo T (2001) Development of a new detection method for DNA molecules. Supercond Sci Technol 14(12):1131CrossRefGoogle Scholar
  104. 104.
    Ejsing L, Hansen MF, Menon AK, Ferreira H, Graham D, Freitas P (2004) Planar hall effect sensor for magnetic micro-and nanobead detection. Appl Phys Lett 84(23):4729–4731CrossRefGoogle Scholar
  105. 105.
    Kim KW, Reddy V, Torati SR, Hu XH, Sandhu A, Kim CG (2015) On-chip magnetometer for characterization of superparamagnetic nanoparticles. Lab Chip 15(3):696–703PubMedCrossRefGoogle Scholar
  106. 106.
    Lin G, Fomin VM, Makarov D, Schmidt OG (2015) Supervised discriminant analysis for droplet micro-magnetofluidics. Microfluid Nanofluid 19(2):457–464PubMedCrossRefGoogle Scholar
  107. 107.
    Habault D, Dery A, Leng J, Lecommandoux S, Meins JFL, Sandre O (2013) Droplet microfluidics to prepare magnetic polymer vesicles and to confine the heat in magnetic hyperthermia. IEEE Trans Magn 49(1):182–190.  https://doi.org/10.1109/tmag.2012.2221688 CrossRefGoogle Scholar
  108. 108.
    Dietzel A (2016) Microsystems for pharmatechnology. SpringerGoogle Scholar
  109. 109.
    Toepke MW, Beebe DJ (2006) PDMS absorption of small molecules and consequences in microfluidic applications. Lab Chip 6(12):1484–1486PubMedCrossRefGoogle Scholar
  110. 110.
    Tian W-C, Finehout E (2009) Microfluidics for biological applications, vol 16. Springer Science & Business Media,Google Scholar
  111. 111.
    Tsao C-W (2016) Polymer microfluidics: simple, low-cost fabrication process bridging academic lab research to commercialized production. Micromachines 7(12):225PubMedCentralCrossRefPubMedGoogle Scholar
  112. 112.
    Griffin S (2003) Fused-silica capillary-the story behind the technology. LC GC EUROPE 16(5):276–289Google Scholar
  113. 113.
    Ren K, Dai W, Zhou J, Su J, Wu H (2011) Whole-Teflon microfluidic chips. Proc Natl Acad Sci 108(20):8162–8166PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Science, Department of ChemistryKuwait UniversityKuwait CityKuwait

Personalised recommendations