Microchimica Acta

, 186:20 | Cite as

Magnetic-core@dual-functional-shell nanocomposites with peroxidase mimicking properties for use in colorimetric and electrochemical sensing of hydrogen peroxide

  • Yuqing Li
  • Jing Liu
  • Yingchun Fu
  • Qingji Xie
  • Yanbin Li
Original Paper


A self-sacrificing catalytic method is described for the preparation of magnetic core/dual-functional-shell nanocomposites composed of magnetite, gold and Prussian Blue (type Fe3O4@Au-PB). Two reaction pathways are integrated. The first involves chemical dissolution of Fe3O4 (the self-sacrificing step) by acid to release ferrous ions which then reacts with hexacyanoferrate(IV) to generate PB in the proximity of the magntic nanoparticles (MNPs). The second involves the reduction of tetrachloroaurate by hydroxylamine to generate gold under the catalytic effect of the MNPs. At the end, the MNPs@Au-PB nanocomposite is formed. This method exploits both the chemical reactivity and catalytic effect of the MNPs in a single step. The multi-function material was applied (a) in an optical assay for H2O2; (b) in an amperometric assay for H2O2; (c) in an enzymatic choline assay using immobilized choline oxidase. The limit of electrochemical detection of H2O2 (at a potential as low as 50 mV) is 1.1 μM which is comparable or better than most analogous methods. The sensors display superior performance compared to the use of conventional core@single-shell (MNPs@PB) nanomaterials.

Graphical abstract

A self-sacrificing catalytic method is described to prepare magnetic core/dual-functional-shell nanocomposites composed of magnetic nanoparticle, gold and Prussian Blue (type MNP@Au-PB). The nanocomposites work well as candidates to develop colorimetric and electrochemical sensors of H2O2 with superior performance to analogues.


Magnetic nanoparticles Core@shell nanocomposites Self-sacrifice Peroxidase mimetic Electrochemical catalysis Colorimetry Sensor H2O2 Glucose Choline oxidase 



This work was supported by National Natural Science Foundation of China (Grants 21505120, 21775137), and the State Key Laboratory of Chemo/Biosensing and Chemometrics.

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2018_3116_MOESM1_ESM.doc (1 mb)
ESM 1 (DOC 1032 kb)


  1. 1.
    Urbanova V, Magro M, Gedanken A, Baratella D, Vianello F, Zboril R (2014) Nanocrystalline Iron oxides, composites, and related materials as a platform for electrochemical, magnetic, and chemical biosensors. Chem Mater 26(23):6653–6673. CrossRefGoogle Scholar
  2. 2.
    Tuček J, Kemp KC, Kim KS, Zbořil R (2014) Iron-oxide-supported Nanocarbon in lithium-ion batteries, medical, catalytic, and environmental applications. ACS Nano 8(8):7571–7612. CrossRefPubMedGoogle Scholar
  3. 3.
    Wu L, Mendoza-Garcia A, Li Q, Sun S (2016) Organic phase syntheses of magnetic nanoparticles and their applications. Chem Rev 116(18):10473–10512. CrossRefPubMedGoogle Scholar
  4. 4.
    Gao J, Gu H, Xu B (2009) Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Acc Chem Res 42(8):1097–1107. CrossRefPubMedGoogle Scholar
  5. 5.
    Xiao D, Lu T, Zeng R, Bi Y (2016) Preparation and highlighted applications of magnetic microparticles and nanoparticles: a review on recent advances. Microchim Acta 183(10):2655–2675. CrossRefGoogle Scholar
  6. 6.
    Zou C, Fu Y, Xie Q, Yao S (2010) High-performance glucose amperometric biosensor based on magnetic polymeric bionanocomposites. Biosens Bioelectron 25(6):1277–1282. CrossRefPubMedGoogle Scholar
  7. 7.
    Zhang Q, Li L, Qiao Z, Lei C, Fu Y, Xie Q, Yao S, Li Y, Ying Y (2017) Electrochemical conversion of Fe3O4 magnetic nanoparticles to electroactive Prussian blue analogues for self-sacrificial label biosensing of avian influenza virus H5N1. Anal Chem 89(22):12145–12151. CrossRefPubMedGoogle Scholar
  8. 8.
    Bordage AL, Moulin R, Fonda E, Fornasieri G, Riviére E, Bleuzen A (2018) Evidence of the Core-shell structure of (Photo)magnetic CoFe prussian blue analogue nanoparticles and peculiar behavior of the surface species. J Am Chem Soc 140(32):10332–10343. CrossRefPubMedGoogle Scholar
  9. 9.
    Fu G, Liu W, Li Y, Jin Y, Jiang L, Liang X, Feng S, Dai Z (2014) Magnetic Prussian blue nanoparticles for targeted Photothermal therapy under magnetic resonance imaging guidance. Bioconjug Chem 25(9):1655–1663. CrossRefPubMedGoogle Scholar
  10. 10.
    Zhao G, Feng J-J, Zhang Q-L, Li S-P, Chen H-Y (2005) Synthesis and characterization of Prussian blue modified magnetite nanoparticles and its application to the Electrocatalytic reduction of H2O2. Chem Mater 17(12):3154–3159. CrossRefGoogle Scholar
  11. 11.
    Ma Y, Xu G, Wei F, Cen Y, Xu X, Shi M, Cheng X, Chai Y, Sohail M, Hu Q (2018) One-pot synthesis of a magnetic, Ratiometric fluorescent Nanoprobe by encapsulating Fe3O4 magnetic nanoparticles and dual-emissive rhodamine B modified carbon dots in Metal-organic framework for enhanced HClO sensing. ACS Appl Mater Interfaces 10(24):20801–20805. CrossRefPubMedGoogle Scholar
  12. 12.
    Sadiq MM, Li H, Hill AJ, Falcaro P, Hill MR, Suzuki K (2016) Magnetic induction swing adsorption: an energy efficient route to porous adsorbent regeneration. Chem Mater 28(17):6219–6226. CrossRefGoogle Scholar
  13. 13.
    Chen Y, Xiong Z, Peng L, Gan Y, Zhao Y, Shen J, Qian J, Zhang L, Zhang W (2015) Facile preparation of Core-Shell magnetic Metal-organic framework nanoparticles for the selective capture of Phosphopeptides. ACS Appl Mater Interfaces 7(30):16338–16347. CrossRefPubMedGoogle Scholar
  14. 14.
    Kobayashi H, Mitsuka Y, Kitagawa H (2016) Metal nanoparticles covered with a Metal-organic framework: from one-pot synthetic methods to synergistic energy storage and conversion functions. Inorg Chem 55(15):7301–7310. CrossRefPubMedGoogle Scholar
  15. 15.
    Chen L, Li H, Zhan W, Cao Z, Chen J, Jiang Q, Jiang Y, Xie Z, Kuang Q, Zheng L (2016) Controlled encapsulation of flower-like Rh-Ni alloys with MOFs via tunable template Dealloying for enhanced selective hydrogenation of alkyne. ACS Appl Mater Interfaces 8(45):31059–31066. CrossRefPubMedGoogle Scholar
  16. 16.
    Fu Y, Callaway Z, Lum J, Wang R, Lin J, Li Y (2014) Exploiting enzyme catalysis in ultra-low ion strength Media for Impedance Biosensing of avian influenza virus using a bare interdigitated electrode. Anal Chem 86(4):1965–1971. CrossRefPubMedGoogle Scholar
  17. 17.
    Afkhami A, Shirzadmehr A, Madrakian T, Bagheri H (2014) Improvement in the performance of a Pb 2 + selective potentiometric sensor using modified core/shell SiO 2 /Fe 3 O 4 nano-structure. J Mol Liq 199:108–114CrossRefGoogle Scholar
  18. 18.
    Bagheri H, Afkhami A, Sabertehrani M, Khoshsafar H (2012) Preparation and characterization of magnetic nanocomposite of Schiff base/silica/magnetite as a preconcentration phase for the trace determination of heavyGoogle Scholar
  19. 19.
    Bagheri H, Asgharinezhad AA, Ebrahimzadeh H (2016) Determination of trace amounts of cd(II), cu(II), and Ni(II) in food samples using a novel functionalized magnetic Nanosorbent. Food Anal Methods 9(4):876–888CrossRefGoogle Scholar
  20. 20.
    Bagheri H, Yamini Y, Safari M, Asiabi H, Karimi M, Heydari A (2016) Simultaneous determination of pyrethroids residues in fruit and vegetable samples via supercritical fluid extraction coupled with magnetic solid phase extraction followed by HPLC-UV. J Supercrit Fluids 107:571–580CrossRefGoogle Scholar
  21. 21.
    Bagheri H, Pajooheshpour N, Afkhami A, Khoshsafar H (2016) Fabrication of a novel electrochemical sensing platform based on a core–shell nano-structured/molecularly imprinted polymer for sensitive and selective determination of ephedrine. RSC Adv 6(56):51135–51145CrossRefGoogle Scholar
  22. 22.
    Yin PT, Pongkulapa T, Cho H-Y, Han J, Pasquale NJ, Rabie H, Kim J-H, Choi J-W, Lee K-B (2018) Overcoming Chemoresistance in Cancer via combined MicroRNA therapeutics with anticancer drugs using multifunctional magnetic Core-Shell nanoparticles. ACS Appl Mater Interfaces 10(32):26954–26963. CrossRefPubMedGoogle Scholar
  23. 23.
    Zirak M, Garegeshlagi EJ (2018) Picolinimidoamide-Cu(II) complex anchored on Fe3O4@SiO2 core-shell magnetic nanoparticles: an efficient reusable catalyst for click reaction. J Coord Chem 71(8):1168–1179. CrossRefGoogle Scholar
  24. 24.
    Moorthy MS, Subramanian B, Panchanathan M, Mondal S, Kim H, Lee KD, Oh J (2017) Fucoidan-coated core-shell magnetic mesoporous silica nanoparticles for chemotherapy and magnetic hyperthermia-based thermal therapy applications. New J Chem 41(24):15334–15346. CrossRefGoogle Scholar
  25. 25.
    Hegazy M, Zhou P, Wu G, Wang L, Rahoui N, Taloub N, Huang X, Huang Y (2017) Construction of polymer coated core-shell magnetic mesoporous silica nanoparticles with triple responsive drug delivery. Polym Chem 8(38):5852–5864. CrossRefGoogle Scholar
  26. 26.
    Sun L, Li Q, Hou M, Gao Y, Yang R, Zhang L, Xu Z, Kang Y, Xue P (2018) Light-activatable Chlorin e6 (Ce6)-imbedded erythrocyte membrane vesicles camouflaged Prussian blue nanoparticles for synergistic photothermal and photodynamic therapies of cancer. Biomater Sci 6(11):2881–2895. CrossRefPubMedGoogle Scholar
  27. 27.
    Wang T, Fu Y, Chai L, Chao L, Bu L, Meng Y, Chen C, Ma M, Xie Q, Yao S (2014) Filling carbon nanotubes with Prussian blue nanoparticles of high peroxidase- like catalytic activity for colorimetric Chemoand biosensing. Chem Eur J 20(9):2623–2630. CrossRefPubMedGoogle Scholar
  28. 28.
    Wang T, Fu Y, Bu L, Qin C, Meng Y, Chen C, Ma M, Xie Q, Yao S (2012) Facile synthesis of Prussian blue-filled multiwalled carbon nanotubes nanocomposites: exploring filling/electrochemistry/mass-transfer in Nanochannels and cooperative biosensing mode. J Phys Chem C 116(39):20908–20917. CrossRefGoogle Scholar
  29. 29.
    Farka ZK, Čunderlová V, Horáčková V, Pastucha M, Mikušová Z, Hlaváček A, Skládal P (2018) Prussian blue nanoparticles as a catalytic label in a Sandwich Nanozyme-linked immunosorbent assay. Anal Chem 90(3):2348–2354. CrossRefPubMedGoogle Scholar
  30. 30.
    Jiang Y, Wang W, Li X, Wang X, Zhou J, Mu X (2013) Enzyme-mimetic catalyst-modified Nanoporous SiO2-cellulose hybrid composites with high specific surface area for rapid H2O2 detection. ACS Appl Mater Interfaces 5(6):1913–1916. CrossRefPubMedGoogle Scholar
  31. 31.
    Huang J, Zhu Y, Zhong H, Yang X, Li C (2014) Dispersed CuO nanoparticles on a silicon nanowire for improved performance of nonenzymatic H2O2 detection. ACS Appl Mater Interfaces 6(10):7055–7062. CrossRefPubMedGoogle Scholar
  32. 32.
    Zhang Y, Bai X, Wang X, Shiu K-K, Zhu Y, Jiang H (2014) Highly sensitive Graphene-Pt nanocomposites Amperometric biosensor and its application in living cell H2O2 detection. Anal Chem 86(19):9459–9465. CrossRefPubMedGoogle Scholar
  33. 33.
    Song M, Wang J, Chen B, Wang L (2017) A facile, nonreactive hydrogen peroxide (H2O2) detection method enabled by ion chromatography with UV detector. Anal Chem 89(21):11537–11544. CrossRefPubMedGoogle Scholar
  34. 34.
    Deng C, Li M, Xie Q, Liu M, Tan Y, Xu X, Yao S (2006) New glucose biosensor based on a poly(o-phenylendiamine)/glucose oxidase-glutaraldehyde/Prussian blue/Au electrode with QCM monitoring of various electrode-surface modifications. Anal Chim Acta 557(1):85–94. CrossRefGoogle Scholar
  35. 35.
    Harish S, Joseph J, Phani KLN (2011) Interaction between gold (III) chloride and potassium hexacyanoferrate (II/III)—does it lead to gold analogue of Prussian blue? Electrochim Acta 56(16):5717–5721. CrossRefGoogle Scholar
  36. 36.
    Jiang Y, Yu S, Wang B, Li Y, Sun W, Lu Y, Yan M, Song B, Dou S (2016) Prussian blue@C composite as an ultrahigh-rate and long-life sodium-ion battery cathode. Adv Funct Mater 26(29):5315–5321. CrossRefGoogle Scholar
  37. 37.
    Carvalho, CLC, Silva, ATB, Luz RAS, Castro GMB, da Luz Lima C, Mastelaro VR, da Silva RR, Oliveira ON, Cantanhêde W (2018) Development of Co3[Co(CN)6]2/Fe3O4 bifunctional nanocomposite for clinical sensor applications. ACS Appl Nano Mater:
  38. 38.
    Ma S, Zhan S, Jia Y, Zhou Q (2015) Superior antibacterial activity of Fe3O4-TiO2 Nanosheets under solar light. ACS Appl Mater Interfaces 7(39):21875–21883. CrossRefPubMedGoogle Scholar
  39. 39.
    Bratescu MA, Cho S-P, Takai O, Saito N (2011) Size-controlled gold nanoparticles synthesized in solution plasma. J Phys Chem C 115(50):24569–24576. CrossRefGoogle Scholar
  40. 40.
    Ono LK, Roldan Cuenya B (2008) Formation and thermal stability of Au2O3 on gold nanoparticles: size and support effects. J Phys Chem C 112(12):4676–4686. CrossRefGoogle Scholar
  41. 41.
    Dai H, Li Y, Zhang Q, Fu Y, Li Y (2018) A colorimetric biosensor based on enzyme-catalysis-induced production of inorganic nanoparticles for sensitive detection of glucose in white grape wine. RSC Adv 8(59):33960–33967. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.College of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhouChina
  2. 2.Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China)Hunan Normal UniversityChangshaChina
  3. 3.Department of Biological and Agricultural EngineeringUniversity of ArkansasFayettevilleUSA

Personalised recommendations