Advertisement

Microchimica Acta

, 185:563 | Cite as

Orthogonal gas sensor arrays by chemoresistive material design

  • Nicolay J. Pineau
  • Julia F. Kompalla
  • Andreas T. GüntnerEmail author
  • Sotiris E. Pratsinis
Original Paper

Abstract

Gas sensor arrays often lack discrimination power to different analytes and robustness to interferants, limiting their success outside of research laboratories. This is primarily due to the widely sensitive (thus weakly-selective) nature of the constituent sensors. Here, the effect of orthogonality on array accuracy and precision by selective sensor design is investigated. Therefore, arrays of (2–5) selective and non-selective sensors are formed by systematically altering array size and composition. Their performance is evaluated with 60 random combinations of ammonia, acetone and ethanol at ppb to low ppm concentrations. Best analyte predictions with high coefficients of determination (R2) of 0.96 for ammonia, 0.99 for acetone and 0.88 for ethanol are obtained with an array featuring high degree of orthogonality. This is achieved by using distinctly selective sensors (Si:MoO3 for ammonia and Si:WO3 for acetone together with Si:SnO2) that improve discrimination power and stability of the regression coefficients. On the other hand, arrays with collinear sensors (Pd:SnO2, Pt:SnO2 and Si:SnO2) hardly improve gas predictions having R2 of 0.01, 0.86 and 0.28 for ammonia, acetone and ethanol, respectively. Sometimes they even exhibited lower coefficient of determination than single sensors as a Si:MoO3 sensor alone predicts ammonia better with a R2 of 0.68.

Graphical abstract

Conventional arrays (red) with weakly-selective sensors span a significantly smaller volume in the analyte space than arrays containing distinctly-selective sensors (orthogonal array, green). Orthogonal arrays feature better accuracy and precision than conventional arrays in mixtures of ammonia, acetone and ethanol.

Keywords

Gas sensor Ethanol Acetone Ammonia SnO2 MoO3 WO3 Flame spray pyrolysis Electronic nose 

Notes

Acknowledgments

This study was financially supported by the Swiss National Science Foundation (Grant No.170729 & 159763) and by an ETH Research Grant (No. ETH-21 18-1).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2018_3104_MOESM1_ESM.docx (5.9 mb)
ESM 1 (DOCX 5.86 mb)

References

  1. 1.
    Persaud K, Dodd G (1982) Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature 299(5881):352–355.  https://doi.org/10.1038/299352a0 CrossRefGoogle Scholar
  2. 2.
    Röck F, Barsan N, Weimar U (2008) Electronic nose: current status and future trends. Chem Rev 108(2):705–725.  https://doi.org/10.1021/cr068121q CrossRefGoogle Scholar
  3. 3.
    Ragazzo-Sanchez JA, Chalier P, Chevalier D, Ghommidh C (2006) Electronic nose discrimination of aroma compounds in alcoholised solutions. Sensors Actuators B Chem 114(2):665–673.  https://doi.org/10.1016/j.snb.2005.05.032 CrossRefGoogle Scholar
  4. 4.
    Phillips M (2005) Can the electronic nose really sniff out lung cancer? Am J Respir Crit Care Med 172(8):1060; author reply 1060-1061–1061.  https://doi.org/10.1164/ajrccm.172.8.959 CrossRefGoogle Scholar
  5. 5.
    Pizzini A, Filipiak W, Wille J, Ager C, Wiesenhofer H, Kubinec R, Blaško J, Tschurtschenthaler C, Mayhew CA, Weiss G, Bellmann-Weiler R (2018) Analysis of volatile organic compounds in the breath of patients with stable or acute exacerbation of chronic obstructive pulmonary disease. J Breath Res 12(3):036002.  https://doi.org/10.1088/1752-7163/aaa4c5 CrossRefGoogle Scholar
  6. 6.
    Güntner AT, Koren V, Chikkadi K, Righettoni M, Pratsinis SE (2016) E-nose sensing of low-ppb formaldehyde in gas mixtures at high relative humidity for breath screening of lung cancer? ACS Sens 1(5):528–535.  https://doi.org/10.1021/acssensors.6b00008 CrossRefGoogle Scholar
  7. 7.
    Sundgren H, Winquist F, Lukkari I, Lundstrom I (1991) Artificial neural networks and gas sensor arrays - quantification of individual components in a gas-mixture. Meas Sci Technol 2(5):464–469.  https://doi.org/10.1088/0957-0233/2/5/008 CrossRefGoogle Scholar
  8. 8.
    Carey WP, Beebe KR, Sanchez E, Geladi P, Kowalski BR (1986) Chemometric analysis of multisensor arrays. Sensors Actuators 9(3):223–234.  https://doi.org/10.1016/0250-6874(86)80023-3 CrossRefGoogle Scholar
  9. 9.
    Pearce TC, Schiffman SS, Nagle HT, Gardner JW (2003) Handbook of machine olfaction: electronic nose technology. WiILEY-VCH, Weinheim.  https://doi.org/10.1002/3527601597
  10. 10.
    Joshi N, Hayasaka T, Liu YM, Liu HL, Oliveira ON, Lin LW (2018) A review on chemiresistive room temperature gas sensors based on metal oxide nanostructures, graphene and 2D transition metal dichalcogenides. Microchim Acta 185(4):213.  https://doi.org/10.1007/s00604-018-2750-5 CrossRefGoogle Scholar
  11. 11.
    Righettoni M, Tricoli A, Gass S, Schmid A, Amann A, Pratsinis SE (2012) Breath acetone monitoring by portable Si:WO3 gas sensors. Anal Chim Acta 738:69–75.  https://doi.org/10.1016/j.aca.2012.06.002 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Güntner AT, Pineau NJ, Chie D, Krumeich F, Pratsinis SE (2016) Selective sensing of isoprene by Ti-doped ZnO for breath diagnostics. J Mater Chem B 4(32):5358–5366.  https://doi.org/10.1039/C6TB01335J CrossRefGoogle Scholar
  13. 13.
    Güntner AT, Righettoni M, Pratsinis SE (2016) Selective sensing of NH3 by Si-doped α-MoO3 for breath analysis. Sens Actuators B Chem 223:266–273.  https://doi.org/10.1016/j.snb.2015.09.094 CrossRefGoogle Scholar
  14. 14.
    Güntner AT, Sievi NA, Theodore SJ, Gulich T, Kohler M, Pratsinis SE (2017) Noninvasive body fat burn monitoring from exhaled acetone with Si-doped WO3-sensing nanoparticles. Anal Chem 89(19):10578–10584.  https://doi.org/10.1021/acs.analchem.7b02843 CrossRefGoogle Scholar
  15. 15.
    Güntner AT, Pineau NJ, Mochalski P, Wiesenhofer H, Agapiou A, Mayhew CA, Pratsinis SE (2018) Sniffing entrapped humans with sensor arrays. Anal Chem 90(8):4940–4945.  https://doi.org/10.1021/acs.analchem.8b00237 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Mädler L, Roessler A, Pratsinis SE, Sahm T, Gurlo A, Barsan N, Weimar U (2006) Direct formation of highly porous gas-sensing films by in situ thermophoretic deposition of flame-made Pt/SnO2 nanoparticles. Sens Actuators B Chem 114(1):283–295.  https://doi.org/10.1016/j.snb.2005.05.014 CrossRefGoogle Scholar
  17. 17.
    Tricoli A, Graf M, Pratsinis SE (2008) Optimal doping for enhanced SnO2 sensitivity and thermal stability. Adv Funct Mater 18(13):1969–1976.  https://doi.org/10.1002/adfm.200700784 CrossRefGoogle Scholar
  18. 18.
    Mädler L, Sahm T, Gurlo A, Grunwaldt JD, Barsan N, Weimar U, Pratsinis SE (2006) Sensing low concentrations of CO using flame-spray-made Pt/SnO2 nanoparticles. J Nanopart Res 8(6):783–796.  https://doi.org/10.1007/s11051-005-9029-6 CrossRefGoogle Scholar
  19. 19.
    Davies S, Spanel P, Smith D (1997) Quantitative analysis of ammonia on the breath of patients in end-stage renal failure. Kidney Int 52(1):223–228.  https://doi.org/10.1038/ki.1997.324 CrossRefGoogle Scholar
  20. 20.
    Diskin AM, Spanel P, Smith D (2003) Time variation of ammonia, acetone, isoprene and ethanol in breath: a quantitative SIFT-MS study over 30 days. Physiol Meas 24(1):107–119.  https://doi.org/10.1088/0967-3334/24/1/308 CrossRefGoogle Scholar
  21. 21.
    Mardia KV, Kent JT, Bibby JM (1979) Multivariate analysis. Academic Press, CambridgeGoogle Scholar
  22. 22.
    James G, Witten D, Hastie T, Tishirani R (2013) An introduction to statistical learning. Springer, Heidelberg.  https://doi.org/10.1007/978-1-4614-7138-7 CrossRefGoogle Scholar
  23. 23.
    Pratsinis SE (2010) Aerosol-based technologies in nanoscale manufacturing: from functional materials to devices through core chemical engineering. AICHE J 56(12):3028–3035.  https://doi.org/10.1002/aic.12478 CrossRefGoogle Scholar
  24. 24.
    Gardner JW (1989) A diffusion-reaction model of electrical-conduction in tin oxide gas sensors. Semicond Sci Technol 4(5):345–350.  https://doi.org/10.1088/0268-1242/4/5/003 CrossRefGoogle Scholar
  25. 25.
    van den Broek J, Güntner AT, Pratsinis SE (2018) Highly selective and rapid breath isoprene sensing enabled by activated alumina filter. ACS Sens 3(3):677–683.  https://doi.org/10.1021/acssensors.7b00976 CrossRefGoogle Scholar
  26. 26.
    Güntner AT, Abegg S, Wegner K, Pratsinis SE (2018) Zeolite membranes for highly selective formaldehyde sensors. Sens Actuators B Chem 257:916–923.  https://doi.org/10.1016/j.snb.2017.11.035 CrossRefGoogle Scholar
  27. 27.
    McCartney MM, Zrodnikov Y, Fung AG, LeVasseur MK, Pedersen JM, Zamuruyev KO, Aksenov AA, Kenyon NJ, Davis CE (2017) An easy to manufacture micro gas preconcentrator for chemical sensing applications. ACS Sens 2(8):1167–1174.  https://doi.org/10.1021/acssensors.7b00289 CrossRefGoogle Scholar
  28. 28.
    Itoh T, Miwa T, Tsuruta A, Akamatsu T, Izu N, Shin W, Park J, Hida T, Eda T, Setoguchi Y (2016) Development of an exhaled breath monitoring system with semiconductive gas sensors, a gas condenser unit, and gas chromatograph columns. Sensors 16(11).  https://doi.org/10.3390/s16111891
  29. 29.
    Anderson JC (2015) Measuring breath acetone for monitoring fat loss: review. Obesity 23(12):2327–2334.  https://doi.org/10.1002/oby.21242 CrossRefGoogle Scholar
  30. 30.
    Smith D, Turner C, Spanel P (2007) Volatile metabolites in the exhaled breath of healthy volunteers: their levels and distributions. J Breath Res 1(1):014004.  https://doi.org/10.1088/1752-7155/1/1/014004 CrossRefGoogle Scholar
  31. 31.
    McAleer JF, Moseley PT, Norris JOW, Williams DE, Taylor P, Tofield BC (1987) Tin oxide based gas sensors. Mater Chem Phys 17(6):577–583.  https://doi.org/10.1016/0254-0584(87)90017-4 CrossRefGoogle Scholar
  32. 32.
    Gardner JW, Boilot P, Hines EL (2005) Enhancing electronic nose performance by sensor selection using a new integer-based genetic algorithm approach. Sens Actuators B Chem 106(1):114–121.  https://doi.org/10.1016/j.snb.2004.05.043 CrossRefGoogle Scholar
  33. 33.
    Olive DJ (2017) Linear regression. Springer, Heidelberg.  https://doi.org/10.1007/978-3-319-55252-1 CrossRefGoogle Scholar
  34. 34.
    Harrell FE (2001) Regression Modeling Strategies. Springer series in statistics. Springer, Heidelberg.  https://doi.org/10.1007/978-1-4757-3462-1 CrossRefGoogle Scholar
  35. 35.
    King G (1986) How not to lie with statistics - avoiding common mistakes in quantitative political-science. Am J Polit Sci 30(3):666–687.  https://doi.org/10.2307/2111095 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Nicolay J. Pineau
    • 1
  • Julia F. Kompalla
    • 1
  • Andreas T. Güntner
    • 1
    Email author
  • Sotiris E. Pratsinis
    • 1
  1. 1.Particle Technology Laboratory, Department of Mechanical and Process EngineeringETH ZurichZurichSwitzerland

Personalised recommendations